KEC: unique sequence search by K-mer exclusion

Author(s):  
Pavel Beran ◽  
Dagmar Stehlíková ◽  
Stephen P Cohen ◽  
Vladislav Čurn

Abstract Summary Searching for amino acid or nucleic acid sequences unique to one organism may be challenging depending on size of the available datasets. K-mer elimination by cross-reference (KEC) allows users to quickly and easily find unique sequences by providing target and non-target sequences. Due to its speed, it can be used for datasets of genomic size and can be run on desktop or laptop computers with modest specifications. Availability and implementation KEC is freely available for non-commercial purposes. Source code and executable binary files compiled for Linux, Mac and Windows can be downloaded from https://github.com/berybox/KEC. Supplementary information Supplementary data are available at Bioinformatics online.

Author(s):  
Tomasz Zok

Abstract Motivation Biomolecular structures come in multiple representations and diverse data formats. Their incompatibility with the requirements of data analysis programs significantly hinders the analytics and the creation of new structure-oriented bioinformatic tools. Therefore, the need for robust libraries of data processing functions is still growing. Results BioCommons is an open-source, Java library for structural bioinformatics. It contains many functions working with the 2D and 3D structures of biomolecules, with a particular emphasis on RNA. Availability and implementation The library is available in Maven Central Repository and its source code is hosted on GitHub: https://github.com/tzok/BioCommons Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
David Heller ◽  
Martin Vingron

AbstractMotivationWith the availability of new sequencing technologies, the generation of haplotype-resolved genome assemblies up to chromosome scale has become feasible. These assemblies capture the complete genetic information of both parental haplotypes, increase structural variant (SV) calling sensitivity and enable direct genotyping and phasing of SVs. Yet, existing SV callers are designed for haploid genome assemblies only, do not support genotyping or detect only a limited set of SV classes.ResultsWe introduce our method SVIM-asm for the detection and genotyping of six common classes of SVs from haploid and diploid genome assemblies. Compared against the only other existing SV caller for diploid assemblies, DipCall, SVIM-asm detects more SV classes and reached higher F1 scores for the detection of insertions and deletions on two recently published assemblies of the HG002 individual.Availability and ImplementationSVIM-asm has been implemented in Python and can be easily installed via bioconda. Its source code is available at github.com/eldariont/[email protected] informationSupplementary data are available online.


2019 ◽  
Vol 35 (22) ◽  
pp. 4754-4756 ◽  
Author(s):  
Egor Dolzhenko ◽  
Viraj Deshpande ◽  
Felix Schlesinger ◽  
Peter Krusche ◽  
Roman Petrovski ◽  
...  

Abstract Summary We describe a novel computational method for genotyping repeats using sequence graphs. This method addresses the long-standing need to accurately genotype medically important loci containing repeats adjacent to other variants or imperfect DNA repeats such as polyalanine repeats. Here we introduce a new version of our repeat genotyping software, ExpansionHunter, that uses this method to perform targeted genotyping of a broad class of such loci. Availability and implementation ExpansionHunter is implemented in C++ and is available under the Apache License Version 2.0. The source code, documentation, and Linux/macOS binaries are available at https://github.com/Illumina/ExpansionHunter/. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (19) ◽  
pp. 3839-3841 ◽  
Author(s):  
Artem Babaian ◽  
I Richard Thompson ◽  
Jake Lever ◽  
Liane Gagnier ◽  
Mohammad M Karimi ◽  
...  

Abstract Summary Transposable elements (TEs) influence the evolution of novel transcriptional networks yet the specific and meaningful interpretation of how TE-derived transcriptional initiation contributes to the transcriptome has been marred by computational and methodological deficiencies. We developed LIONS for the analysis of RNA-seq data to specifically detect and quantify TE-initiated transcripts. Availability and implementation Source code, container, test data and instruction manual are freely available at www.github.com/ababaian/LIONS. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (13) ◽  
pp. 4097-4098 ◽  
Author(s):  
Anna Breit ◽  
Simon Ott ◽  
Asan Agibetov ◽  
Matthias Samwald

Abstract Summary Recently, novel machine-learning algorithms have shown potential for predicting undiscovered links in biomedical knowledge networks. However, dedicated benchmarks for measuring algorithmic progress have not yet emerged. With OpenBioLink, we introduce a large-scale, high-quality and highly challenging biomedical link prediction benchmark to transparently and reproducibly evaluate such algorithms. Furthermore, we present preliminary baseline evaluation results. Availability and implementation Source code and data are openly available at https://github.com/OpenBioLink/OpenBioLink. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (14) ◽  
pp. 4197-4199
Author(s):  
Yishu Wang ◽  
Arnaud Mary ◽  
Marie-France Sagot ◽  
Blerina Sinaimeri

Abstract Motivation Phylogenetic tree reconciliation is the method of choice in analyzing host-symbiont systems. Despite the many reconciliation tools that have been proposed in the literature, two main issues remain unresolved: (i) listing suboptimal solutions (i.e. whose score is ‘close’ to the optimal ones) and (ii) listing only solutions that are biologically different ‘enough’. The first issue arises because the optimal solutions are not always the ones biologically most significant; providing many suboptimal solutions as alternatives for the optimal ones is thus very useful. The second one is related to the difficulty to analyze an often huge number of optimal solutions. In this article, we propose Capybara that addresses both of these problems in an efficient way. Furthermore, it includes a tool for visualizing the solutions that significantly helps the user in the process of analyzing the results. Availability and implementation The source code, documentation and binaries for all platforms are freely available at https://capybara-doc.readthedocs.io/. Contact [email protected] or [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Michael Milton ◽  
Natalie Thorne

Abstract Summary aCLImatise is a utility for automatically generating tool definitions compatible with bioinformatics workflow languages, by parsing command-line help output. aCLImatise also has an associated database called the aCLImatise Base Camp, which provides thousands of pre-computed tool definitions. Availability and implementation The latest aCLImatise source code is available within a GitHub organisation, under the GPL-3.0 license: https://github.com/aCLImatise. In particular, documentation for the aCLImatise Python package is available at https://aclimatise.github.io/CliHelpParser/, and the aCLImatise Base Camp is available at https://aclimatise.github.io/BaseCamp/. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (21) ◽  
pp. 4501-4503 ◽  
Author(s):  
Petar V Todorov ◽  
Benjamin M Gyori ◽  
John A Bachman ◽  
Peter K Sorger

Abstract Summary INDRA-IPM (Interactive Pathway Map) is a web-based pathway map modeling tool that combines natural language processing with automated model assembly and visualization. INDRA-IPM contextualizes models with expression data and exports them to standard formats. Availability and implementation INDRA-IPM is available at: http://pathwaymap.indra.bio. Source code is available at http://github.com/sorgerlab/indra_pathway_map. The underlying web service API is available at http://api.indra.bio:8000. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Aleksandra I Jarmolinska ◽  
Anna Gambin ◽  
Joanna I Sulkowska

Abstract Summary The biggest hurdle in studying topology in biopolymers is the steep learning curve for actually seeing the knots in structure visualization. Knot_pull is a command line utility designed to simplify this process—it presents the user with a smoothing trajectory for provided structures (any number and length of protein, RNA or chromatin chains in PDB, CIF or XYZ format), and calculates the knot type (including presence of any links, and slipknots when a subchain is specified). Availability and implementation Knot_pull works under Python >=2.7 and is system independent. Source code and documentation are available at http://github.com/dzarmola/knot_pull under GNU GPL license and include also a wrapper script for PyMOL for easier visualization. Examples of smoothing trajectories can be found at: https://www.youtube.com/watch?v=IzSGDfc1vAY. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (10) ◽  
pp. 3248-3250
Author(s):  
Marta Lovino ◽  
Maria Serena Ciaburri ◽  
Gianvito Urgese ◽  
Santa Di Cataldo ◽  
Elisa Ficarra

Abstract Summary In the last decade, increasing attention has been paid to the study of gene fusions. However, the problem of determining whether a gene fusion is a cancer driver or just a passenger mutation is still an open issue. Here we present DEEPrior, an inherently flexible deep learning tool with two modes (Inference and Retraining). Inference mode predicts the probability of a gene fusion being involved in an oncogenic process, by directly exploiting the amino acid sequence of the fused protein. Retraining mode allows to obtain a custom prediction model including new data provided by the user. Availability and implementation Both DEEPrior and the protein fusions dataset are freely available from GitHub at (https://github.com/bioinformatics-polito/DEEPrior). The tool was designed to operate in Python 3.7, with minimal additional libraries. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document