imagej plugin
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 38)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Tristan Dubos ◽  
Axel Poulet ◽  
Geoffrey Thomson ◽  
Emilie Pery ◽  
Frederic Chausse ◽  
...  

Background: The three-dimensional nuclear arrangement of chromatin impacts many cellular processes operating at the DNA level in animal and plant systems. Chromatin organization is a dynamic process that can be affected by biotic and abiotic stresses. Three-dimensional imaging technology allows to follow these dynamic changes, but only a few semi-automated processing methods currently exist for quantitative analysis of the 3D chromatin organization. Results: We present an automated method, Nuclear Object DetectionJ (NODeJ), developed as an imageJ plugin. This program segments and analyzes high intensity domains in nuclei from 3D images. NODeJ performs a Laplacian convolution on the mask of a nucleus to enhance the contrast of intra-nuclear objects and allows their detection. We reanalyzed public datasets and determined that NODeJ is able to accurately identify heterochromatin domains from a diverse set of Arabidopsis thaliana nuclei stained with DAPI or Hoechst. NODeJ is also able to detect signals in nuclei from DNA FISH experiments, allowing for the analysis of specific targets of interest. Conclusion and availability: NODeJ allows for efficient automated analysis of subnuclear structures by avoiding the semi-automated steps, resulting in reduced processing time and analytical bias. NODeJ is written in Java and provided as an ImageJ plugin with a command line option to perform more high-throughput analyses. NODeJ can be downloaded from https://gitlab.com/axpoulet/image2danalysis/-/releases with source code, documentation and further information avaliable at https://gitlab.com/axpoulet/image2danalysis. The images used in this study are publicly available at https://www.brookes.ac.uk/indepth/images/ and https://doi.org/10.15454/1HSOIE.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0240280
Author(s):  
Gregory Mazo

Publications involving fluorescent microscopy images generally contain many panels with split channels, merged images, scale bars and label text. Similar layouts of panels are used when displaying other microscopy images, electron micrographs, photographs, and other images. Assembling and editing these figures with even spacing, consistent font, text position, accurate scale bars, and other features can be tedious and time consuming. In order to save time, I have created a toolset and ImageJ Plugin called QuickFigures. QuickFigures includes many helpful features that streamline the process of creating, aligning, and editing scientific figures. Those features include tools that automatically create split channel figures from a region of interest (“Quick Figure” button and “Inset Tool”), layouts that make it easy to rearrange panels, multiple tools to align objects, and “Figure Format” menu options that help a user ensure that large numbers of figures have consistent appearance. QuickFigures was compared to previous tools by measuring the amount of time needed for a user to create a figure using each software (QuickFigures, OMERO.figure. EZFig, FigureJ and PowerPoint). QuickFigures significantly reduced the amount of time required to create a figure. The toolsets were also compared by checking each software against a list of features. QuickFigures had the most extensive set of features. Therefore, QuickFigures is an advantageous alternative to traditional methods of constructing scientific figures. After a user has saved time by creating their work in QuickFigures, the figures can be exported to a variety of formats including PowerPoint, PDF, SVG, PNG, TIFF and Adobe Illustrator. Export was successfully tested for each file format and object type. Exported objects and text are editable in their target software, making them suitable for sharing with collaborators. The software is free, open source and can be installed easily.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongqiang Ma ◽  
Wei Jiang ◽  
Jianquan Xu ◽  
Yang Liu

AbstractSuper-resolution localization microscopy allows visualization of biological structure at nanoscale resolution. However, the presence of heterogeneous background can degrade the nanoscale resolution by tens of nanometers and introduce significant image artifacts. Here we investigate and validate an efficient approach, referred to as extreme value-based emitter recovery (EVER), to accurately recover the distorted fluorescent emitters from heterogeneous background. Through numerical simulation and biological experiments, we validated the accuracy of EVER in improving the fidelity of the reconstructed super-resolution image for a wide variety of imaging characteristics. EVER requires no manual adjustment of parameters and has been implemented as an easy-to-use ImageJ plugin that can immediately enhance the quality of reconstructed super-resolution images. This method is validated as an efficient way for robust nanoscale imaging of samples with heterogeneous background fluorescence, such as thicker tissue and cells.


Author(s):  
Santiago Beltran Diaz ◽  
Chee Ho H’ng ◽  
Xinli Qu ◽  
Michael Doube ◽  
John Tan Nguyen ◽  
...  

The characterization of developmental phenotypes often relies on the accurate linear measurement of structures that are small and require laborious preparation. This is tedious and prone to errors, especially when repeated for the multiple replicates that are required for statistical analysis, or when multiple distinct structures have to be analyzed. To address this issue, we have developed a pipeline for characterization of long-bone length using X-ray microtomography (XMT) scans. The pipeline involves semi-automated algorithms for automatic thresholding and fast interactive isolation and 3D-model generation of the main limb bones, using either the open-source ImageJ plugin BoneJ or the commercial Mimics Innovation Suite package. The tests showed the appropriate combination of scanning conditions and analysis parameters yields fast and comparable length results, highly correlated with the measurements obtained via ex vivo skeletal preparations. Moreover, since XMT is not destructive, the samples can be used afterward for histology or other applications. Our new pipelines will help developmental biologists and evolutionary researchers to achieve fast, reproducible and non-destructive length measurement of bone samples from multiple animal species.


2021 ◽  
Author(s):  
Ana Bela Campos ◽  
Sara Duarte-Silva ◽  
Antonio Francisco Ambrosio ◽  
Patricia Maciel ◽  
Bruno Fernandes

Microglial cells are the first line of defense within the central nervous system, with morphological characterization being widely used to define their activation status. Most methods to evaluate microglia status are manual, and, therefore, often biased, inaccurate, and time consuming. In fact, the process to collect morphological data starts with the acquisition of photomicrographs from where images of single cells are extracted. Then, the researcher collects the morphological features that characterize each cell. However, a manual data collection process from single cells can take weeks to complete. This work describes an open-source ImageJ plugin, MorphData, which automatizes the data extraction process of morphological features of single microglial cells. The plugin collects, processes, and organizes features associated with cell complexity and ramification. In a computer with limited computing power, it took less than 14 minutes to handle the morphological features of 699 single cells of two experimental groups. The same process, if performed manually, would take around 19 working days. Overall, MorphData significantly reduces the time taken to collect morphological data from microglial cells, which can then be used to study, understand, and characterize microglia behavior in the brain of human patients or of animal models of neurological and psychiatric diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ariel Waisman ◽  
Alessandra Marie Norris ◽  
Martín Elías Costa ◽  
Daniel Kopinke

AbstractSkeletal muscle has the remarkable ability to regenerate. However, with age and disease muscle strength and function decline. Myofiber size, which is affected by injury and disease, is a critical measurement to assess muscle health. Here, we test and apply Cellpose, a recently developed deep learning algorithm, to automatically segment myofibers within murine skeletal muscle. We first show that tissue fixation is necessary to preserve cellular structures such as primary cilia, small cellular antennae, and adipocyte lipid droplets. However, fixation generates heterogeneous myofiber labeling, which impedes intensity-based segmentation. We demonstrate that Cellpose efficiently delineates thousands of individual myofibers outlined by a variety of markers, even within fixed tissue with highly uneven myofiber staining. We created a novel ImageJ plugin (LabelsToRois) that allows processing of multiple Cellpose segmentation images in batch. The plugin also contains a semi-automatic erosion function to correct for the area bias introduced by the different stainings, thereby identifying myofibers as accurately as human experts. We successfully applied our segmentation pipeline to uncover myofiber regeneration differences between two different muscle injury models, cardiotoxin and glycerol. Thus, Cellpose combined with LabelsToRois allows for fast, unbiased, and reproducible myofiber quantification for a variety of staining and fixation conditions.


F1000Research ◽  
2021 ◽  
Vol 9 ◽  
pp. 1380
Author(s):  
Romain Guiet ◽  
Olivier Burri ◽  
Nicolas Chiaruttini ◽  
Olivier Hagens ◽  
Arne Seitz

The number of grey values that can be displayed on monitors and be processed by the human eye is smaller than the dynamic range of image-based sensors. This makes the visualization of such data a challenge, especially with specimens where small dim structures are equally important as large bright ones, or whenever variations in intensity, such as non-homogeneous staining efficiencies or light depth penetration, becomes an issue. While simple intensity display mappings are easily possible, these fail to provide a one-shot observation that can display objects of varying intensities. In order to facilitate the visualization-based analysis of large volumetric datasets, we developed an easy-to-use ImageJ plugin enabling the compressed display of features within several magnitudes of intensities. The Display Enhancement for Visual Inspection of Large Stacks plugin (DEVILS) homogenizes the intensities by using a combination of local and global pixel operations to allow for high and low intensities to be visible simultaneously to the human eye. The plugin is based on a single, intuitively understandable parameter, features a preview mode, and uses parallelization to process multiple image planes. As output, the plugin is capable of producing a BigDataViewer-compatible dataset for fast visualization. We demonstrate the utility of the plugin for large volumetric image data.


2021 ◽  
Vol 4 (3) ◽  
pp. e202000880
Author(s):  
Esther Wershof ◽  
Danielle Park ◽  
David J Barry ◽  
Robert P Jenkins ◽  
Antonio Rullan ◽  
...  

Diverse extracellular matrix patterns are observed in both normal and pathological tissue. However, most current tools for quantitative analysis focus on a single aspect of matrix patterning. Thus, an automated pipeline that simultaneously quantifies a broad range of metrics and enables a comprehensive description of varied matrix patterns is needed. To this end, we have developed an ImageJ plugin called TWOMBLI, which stands for The Workflow Of Matrix BioLogy Informatics. This pipeline includes metrics of matrix alignment, length, branching, end points, gaps, fractal dimension, curvature, and the distribution of fibre thickness. TWOMBLI is designed to be quick, versatile and easy-to-use particularly for non-computational scientists. TWOMBLI can be downloaded from https://github.com/wershofe/TWOMBLI together with detailed documentation and tutorial video. Although developed with the extracellular matrix in mind, TWOMBLI is versatile and can be applied to vascular and cytoskeletal networks. Here we present an overview of the pipeline together with examples from a wide range of contexts where matrix patterns are generated.


2021 ◽  
Author(s):  
Ariel Waisman ◽  
Alessandra Norris ◽  
Martín Elías Costa ◽  
Daniel Kopinke

ABSTRACTSkeletal muscle has the remarkable ability to regenerate. However, with age and disease muscle strength and function decline. Myofiber size, which is affected by injury and disease, is a critical measurement to assess muscle health. Here, we test and apply Cellpose, a recently developed deep learning algorithm, to automatically segment myofibers within murine skeletal muscle. We first show that tissue fixation is necessary to preserve cellular structures such as primary cilia, small cellular antennae, and adipocyte lipid droplets. However, fixation generates heterogeneous myofiber labeling, which impedes intensity-based segmentation. We demonstrate that Cellpose efficiently delineates thousands of individual myofibers outlined by a variety of markers, even within fixed tissue with highly uneven myofiber staining. We created a novel ImageJ plugin (LabelsToRois) that allows processing multiple Cellpose segmentation images in batch. The plugin also contains a semi-automatic erosion function to correct for the area bias introduced by the different stainings, identifying myofibers as accurately as human experts. We successfully applied our segmentation pipeline to uncover myofiber size differences between two different muscle injury models, cardiotoxin and glycerol. Thus, Cellpose combined with LabelsToRois allows for fast, unbiased, and reproducible myofiber quantification for a variety of staining and fixation conditions.


Sign in / Sign up

Export Citation Format

Share Document