scholarly journals Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection

2013 ◽  
Vol 30 (4) ◽  
pp. 472-479 ◽  
Author(s):  
Bin Liu ◽  
Deyuan Zhang ◽  
Ruifeng Xu ◽  
Jinghao Xu ◽  
Xiaolong Wang ◽  
...  

Abstract Motivation: Owing to its importance in both basic research (such as molecular evolution and protein attribute prediction) and practical application (such as timely modeling the 3D structures of proteins targeted for drug development), protein remote homology detection has attracted a great deal of interest. It is intriguing to note that the profile-based approach is promising and holds high potential in this regard. To further improve protein remote homology detection, a key step is how to find an optimal means to extract the evolutionary information into the profiles. Results: Here, we propose a novel approach, the so-called profile-based protein representation, to extract the evolutionary information via the frequency profiles. The latter can be calculated from the multiple sequence alignments generated by PSI-BLAST. Three top performing sequence-based kernels (SVM-Ngram, SVM-pairwise and SVM-LA) were combined with the profile-based protein representation. Various tests were conducted on a SCOP benchmark dataset that contains 54 families and 23 superfamilies. The results showed that the new approach is promising, and can obviously improve the performance of the three kernels. Furthermore, our approach can also provide useful insights for studying the features of proteins in various families. It has not escaped our notice that the current approach can be easily combined with the existing sequence-based methods so as to improve their performance as well. Availability and implementation: For users’ convenience, the source code of generating the profile-based proteins and the multiple kernel learning was also provided at http://bioinformatics.hitsz.edu.cn/main/∼binliu/remote/ Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.

Author(s):  
N. Srinivasan ◽  
G. Agarwal ◽  
R. M. Bhaskara ◽  
R. Gadkari ◽  
O. Krishnadev ◽  
...  

In the post-genomic era, biological databases are growing at a tremendous rate. Despite rapid accumulation of biological information, functions and other biological properties of many putative gene products of various organisms remain either unknown or obscure. This paper examines how strategic integration of large biological databases and combinations of various biological information helps address some of the fundamental questions on protein structure, function and interactions. New developments in function recognition by remote homology detection and strategic use of sequence databases aid recognition of functions of newly discovered proteins. Knowledge of 3-D structures and combined use of sequences and 3-D structures of homologous protein domains expands the ability of remote homology detection enormously. The authors also demonstrate how combined consideration of functions of individual domains of multi-domain proteins helps in recognizing gross biological attributes. This paper also discusses a few cases of combining disparate biological datasets or combination of disparate biological information in obtaining new insights about protein-protein interactions across a host and a pathogen. Finally, the authors discuss how combinations of low resolution structural data, obtained using cryoEM studies, of gigantic multi-component assemblies, and atomic level 3-D structures of the components is effective in inferring finer features in the assembly.


Author(s):  
Jun Wang ◽  
Pu-Feng Du ◽  
Xin-Yu Xue ◽  
Guang-Ping Li ◽  
Yuan-Ke Zhou ◽  
...  

Abstract Summary Many efforts have been made in developing bioinformatics algorithms to predict functional attributes of genes and proteins from their primary sequences. One challenge in this process is to intuitively analyze and to understand the statistical features that have been selected by heuristic or iterative methods. In this paper, we developed VisFeature, which aims to be a helpful software tool that allows the users to intuitively visualize and analyze statistical features of all types of biological sequence, including DNA, RNA and proteins. VisFeature also integrates sequence data retrieval, multiple sequence alignments and statistical feature generation functions. Availability and implementation VisFeature is a desktop application that is implemented using JavaScript/Electron and R. The source codes of VisFeature are freely accessible from the GitHub repository (https://github.com/wangjun1996/VisFeature). The binary release, which includes an example dataset, can be freely downloaded from the same GitHub repository (https://github.com/wangjun1996/VisFeature/releases). Contact [email protected] or [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document