scholarly journals Discriminating early- and late-stage cancers using multiple kernel learning on gene sets

2018 ◽  
Vol 34 (13) ◽  
pp. i412-i421 ◽  
Author(s):  
Arezou Rahimi ◽  
Mehmet Gönen
2019 ◽  
Vol 35 (24) ◽  
pp. 5137-5145 ◽  
Author(s):  
Onur Dereli ◽  
Ceyda Oğuz ◽  
Mehmet Gönen

Abstract Motivation Survival analysis methods that integrate pathways/gene sets into their learning model could identify molecular mechanisms that determine survival characteristics of patients. Rather than first picking the predictive pathways/gene sets from a given collection and then training a predictive model on the subset of genomic features mapped to these selected pathways/gene sets, we developed a novel machine learning algorithm (Path2Surv) that conjointly performs these two steps using multiple kernel learning. Results We extensively tested our Path2Surv algorithm on 7655 patients from 20 cancer types using cancer-specific pathway/gene set collections and gene expression profiles of these patients. Path2Surv statistically significantly outperformed survival random forest (RF) on 12 out of 20 datasets and obtained comparable predictive performance against survival support vector machine (SVM) using significantly fewer gene expression features (i.e. less than 10% of what survival RF and survival SVM used). Availability and implementation Our implementations of survival SVM and Path2Surv algorithms in R are available at https://github.com/mehmetgonen/path2surv together with the scripts that replicate the reported experiments. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (12) ◽  
pp. 3766-3772 ◽  
Author(s):  
Arezou Rahimi ◽  
Mehmet Gönen

Abstract Motivation Genomic information is increasingly being used in diagnosis, prognosis and treatment of cancer. The severity of the disease is usually measured by the tumor stage. Therefore, identifying pathways playing an important role in progression of the disease stage is of great interest. Given that there are similarities in the underlying mechanisms of different cancers, in addition to the considerable correlation in the genomic data, there is a need for machine learning methods that can take these aspects of genomic data into account. Furthermore, using machine learning for studying multiple cancer cohorts together with a collection of molecular pathways creates an opportunity for knowledge extraction. Results We studied the problem of discriminating early- and late-stage tumors of several cancers using genomic information while enforcing interpretability on the solutions. To this end, we developed a multitask multiple kernel learning (MTMKL) method with a co-clustering step based on a cutting-plane algorithm to identify the relationships between the input tasks and kernels. We tested our algorithm on 15 cancer cohorts and observed that, in most cases, MTMKL outperforms other algorithms (including random forests, support vector machine and single-task multiple kernel learning) in terms of predictive power. Using the aggregate results from multiple replications, we also derived similarity matrices between cancer cohorts, which are, in many cases, in agreement with available relationships reported in the relevant literature. Availability and implementation Our implementations of support vector machine and multiple kernel learning algorithms in R are available at https://github.com/arezourahimi/mtgsbc together with the scripts that replicate the reported experiments. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Guo ◽  
Xiaoqian Zhang ◽  
Zhigui Liu ◽  
Xuqian Xue ◽  
Qian Wang ◽  
...  

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 565-580
Author(s):  
Ling Wang ◽  
Hongqiao Wang ◽  
Guangyuan Fu

Author(s):  
Andrew D. O'Harney ◽  
Andre Marquand ◽  
Katya Rubia ◽  
Kaylita Chantiluke ◽  
Anna Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document