History of the Royal Society. By Thomas Sprat. Edited with critical apparatus by Jackson I. Copeand Harold Whitmore Jones. St Louis (Washington University Studies), London, Routledge and Kegan Paul, 1959. Pp. xxxii ÷ 456 − 78. 50s. net.

1960 ◽  
Vol 11 (43) ◽  
pp. 263-264
Author(s):  
L. L. WHYTE
PMLA ◽  
1929 ◽  
Vol 44 (2) ◽  
pp. 472-494 ◽  
Author(s):  
Claude Lloyd

On may 30, 1667, Samuel Pepys attended a meeting of the Royal Society at Arundell House where he found “much company, indeed very much company, in expectation of the Duchesse of Newcastle, who had been desired to be invited to the Society; and was, after much debate, pro and con., it seems many being against it; and we do believe,” he observes, “the town will be full of ballads of it.” Thomas Sprat, in his history of the Society published the same year, after pointing out to “Wits and Railleurs” that experimental science will afford them new material for their “wit” and fancy, declares:I acknowledge that we ought to have a great dread of their power: I confess I believe that New Philosophy need not (as Caesar) fear the pale, or the melancholy, as much as the humorous, and the merry: For they perhaps by making it ridiculous, becaus it is new, and becaus they themselves are unwilling to take pains about it, may do it more injury than all the arguments of our severe and frowning and dogmatical Adversaries.


A relatively greater emphasis by the Royal Society during its initial year upon the collection and validation of factual knowledge rather than upon the establishment of theories was reported in 1667 by Thomas Sprat in his History of the Royal Society (1). There is some question whether Sprat’s book represents a consensus of the Royal Society or is merely an expression of private opinion, especially with regard to the origins of the Society (2). Sprat’s description of the practice of the Society does, however, agree well with the treatment given in the pages of the Philosophical Transactions to a controversy which arose over conflicting reports of a comet’s position and over the nature of its path through the heavens. According to Sprat, the Royal Society had three tasks. First, there was a preliminary collection of data. Second, there was the resolving of matter of fact, with reliance on the authority of numbers (3), by which Sprat meant the number of observers who confirmed a particular observation. Third, there was the task of conjecturing on causes, a task in which Sprat noted that the members of the Royal Society were perhaps overly cautious:


2020 ◽  
Vol 86 (2) ◽  
pp. 91-92
Author(s):  
Mario Ceroni Galloso

En la actualidad, en todos los países, se observa que algunas personas inducen el uso de todo tipo de sustancias y preparados con tal de prevenir o tratarse del COVID-19 y en su desesperación algunos consumen e incluso se inyectan sustancias químicas peligrosas, lo cual es sumamente preocupante. Siendo el mercado informal de nuestro país algo normal, la venta de diversos productos químicos por las redes sociales se ha vuelto cotidiano. Aparte de las medicinas, muchas de ellas adulteradas -que sin recetas médicas se compran por la Internet- hay tres compuestos peligrosos que se venden sin control por personas no autorizadas y sin pericia en el manejo de sustancias peligrosas y además los manipulan temerariamente, ellos son: clorito de sodio, dióxido de cloro y ácido clorhídrico. El dióxido de cloro es un gas amarillo rojizo que fue descubierto por Sir Humphrey Davy en 1814 y se comercializa desde los años 20 del siglo pasado como desinfectante. Se trata de un oxidante muy fuerte, muy reactivo e inestable que incluso puede explotar. Si bien es soluble en agua se descompone por fotólisis, generando especies como el radical hipoclorito, ácido cloroso y ácido clórico que luego se descomponen. Se conoce que reacciona violentamente con mercurio, fósforo, azufre, entre otras sustancias, lo cual es un peligro porque podría originar fuego y explosión. El dióxido de cloro es una sustancia corrosiva cuya inhalación causa tos, dolor de garganta, dificultad respiratoria, entre otros daños. En contacto con la piel causa desde enrojecimiento hasta quemaduras cutáneas graves. Para preparar el dióxido de cloro el personal capacitado y autorizado lo obtiene al reaccionar clorito de sodio con ácido clorhídrico para su uso como desinfectante. El clorito fue observado primero por N.A.E. Millon en 1843, pero fue investigado mucho más por G. Bruni y G.R Levi en la primera y segunda década del siglo pasado. Este compuesto tiene riesgo de incendio y explosión. Su inhalación causa dolor de garganta y tos y en contacto con la piel causa enrojecimiento y dolor. Al ser una sustancia fuertemente oxidante reacciona violentamente con muchos reductores, en especial combustibles. Como uno de los usos del dióxido de cloro es en el tratamiento de agua, la EPA (Environmental Protection Agency) ha establecido niveles máximos de presencia de clorito en agua potable de 1 mg/L y para el dióxido de cloro de 0,8 mg/L. Asimismo, los trabajadores que usan este compuesto como desinfectante saben que el límite de exposición ocupacional al dióxido de cloro para una jornada de 8 horas diarias, 40 horas por semana, es de 0,1 partes por millón (0,3 miligramos por metro cúbico [mg/m³]). Toda sustancia de uso médico debe pasar por un control de calidad. Un mercado informal de insumos no garantiza la calidad de los mismos en cuanto a su pureza o presencia de contaminantes. Como el clorito de sodio lo venden como desinfectante, se desconoce su pureza y nadie sabe cuáles son sus contaminantes. Asimismo, siendo el ácido clorhídrico una sustancia sujeta a registro, control y fiscalización algunas personas, de manera ilegal, en el Perú la venden desconociéndose además su calidad. Los usos supuestamente médicos del dióxido de cloro y su venta se iniciaron en Estados Unidos en el 2006, donde sin ningún sustento clínico algunos de los vendedores indicaban que curaba la malaria, luego incorporaron el autismo, ébola, gripe H1N1, cáncer, etcétera. Tras un tiempo, su venta se trasladó a Europa y a otros continentes. Ahora, en tiempo de pandemia, sus promotores dicen, sin prueba alguna, que cura el COVID-19. Una revisión crítica en las publicaciones relacionadas con el dióxido de cloro indica que muchos son estudios químicos, biológicos y toxicológicos; la mayoría son estudios preclínicos. Como se sabe, para que una sustancia sea aprobada con fines medicinales se debe cumplir con los estudios clínicos de las fases I, II y III, tras lo cual se derivan a instituciones como la FDA, que tras exhaustiva revisión la aprueban o desaprueban. A la fecha no existe ningún documento que acredite que haya pasado estas fases el dióxido de cloro. En vista de ello, y de los peligros de intoxicación que ocasiona este compuesto, ningún organismo de salud ha aprobado el uso del dióxido de cloro con fines médicos; es más, vetan su uso y alertan a la población de los problemas de salud causados por este compuesto. Cuando la histeria social induce a las personas a consumir sustancias muy peligrosas para la salud es bueno recordar que en el año 1667 se publicó el libro History of the Royal Society encargado a Thomas Sprat y supervisado por R. Boyle y J. Wilkins, que en un párrafo señala “la actividad científica consiste en recoger los hechos de la naturaleza, absteniéndose de recoger teorías generales que se “anticipen” a ellos, huyendo de los sistemas dogmáticos generales, de la retórica, las sutilezas dialécticas y la fantasía, buscando a cambio la aplicación útil”. Sabias palabras que siglos después recobran importancia en tiempos de coronavirus.


THE mathematical abilities of Christopher Wren, whom Oughtred praised in his Clavis,md Newton numbered with Wallis and Huygens among the outstanding geometers of the age, have been admired by all subsequent historians of mathematics; but it has always been difficult to find examples of what Wren actually did. The fullest and most laudatory account of Wren as a scientist was written by Thomas Sprat in his History of the Royal Society (1667) but even Sprat—at a time when W ren’s work as an architect was barely begun—listed no instance of his idol’s achievement in mathematics.


Much has been written on the origin and originators of the Royal Society, since 1662 the most effective body ever assembled for the true advancement of science and scientific method. There are two aspects of this climacteric event to be con­sidered in relation to the history of our civilization. The first is, how was the atmosphere, or climate of opinion, created for the blossoming and consolidation of the resulting conquests of science? The second is the identification of the indi­vidual human beings whose minds were first set to envisage the vast problems presented to them and what exactly did they do. Thomas Sprat, the first historian of the Royal Society, in his book published in 1667 only five years after the Society received its Charter, had no doubt about the answer to the more general question as to the climatic origin. He was discussing the old philosophy based on Aristotle and the new sort of philosophers ‘who have not only disagreed from the Antients, but have also proposed to themselves the right course of slow and sure Experimenting’. Of these, Sprat said, he would ‘mention only one great Man, who had the true Imagination of the whole extent of this Enterprize, as it is now set on foot, and that is the Lord Bacon’. There should be, he wrote, no preface to the History of the Royal Society other than some of Bacon’s writings. He was a man of strong, clear and powerful imagination, with a vigorous and majestical style, a bold and familiar wit. In fact Sprat seemed to answer both my questions by reference to a single name. Nevertheless, he had to admit that no one mind, not even Bacon’s, could grasp the whole design, for he tried to take all that comes, and to ‘heap rather than to register’. He might have added, as we shall see, that Bacon was no advocate of ‘the slow and sure experi­menting’ he had just mentioned. From that time to the present, Bacon as the Great Originator has received the lip-service of many people, few of whom have read his works. It would be well to examine a little more closely the role filled by Bacon. It is perhaps fair to say that he was the human mouth-piece of that impalp­able thing, the Zeitgeist , a presence which would have made itself felt even if Bacon had never been born. The scientific revolution was in the air. It had been slowly gathering force in Europe through the sixteenth century and questions of the old dogmatism were beginning to be asked. It fell to the lot of Bacon to be the voice of this spirit in England as the first statesman of science. His main interest, it has been said, was in ‘the science of science’. His grand idea was to establish a view of scientific possibilities so all-embracing that it would restore mankind to his position as it was before his fall in the Garden of Eden. Man was to re-establish his conquest of the universe and Bacon was to be his prime agent; but in order to organize science for the benefit of the human race he needed power, a thing only obtainable through politics.


George Gabriel Stokes was one of the most significant mathematicians and natural philosophers of the nineteenth century. Serving as Lucasian professor at Cambridge he made wide-ranging contributions to optics, fluid dynamics and mathematical analysis. As Secretary of the Royal Society he played a major role in the direction of British science acting as both a sounding board and a gatekeeper. Outside his own area he was a distinguished public servant and MP for Cambridge University. He was keenly interested in the relation between science and religion and wrote extensively on the matter. This edited collection of essays brings together experts in mathematics, physics and the history of science to cover the many facets of Stokes’s life in a scholarly but accessible way.


Sign in / Sign up

Export Citation Format

Share Document