scholarly journals Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer's disease

Brain ◽  
2010 ◽  
Vol 133 (11) ◽  
pp. 3301-3314 ◽  
Author(s):  
N. Villain ◽  
M. Fouquet ◽  
J.-C. Baron ◽  
F. Mezenge ◽  
B. Landeau ◽  
...  
Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Jonathan Graff-Radford ◽  
Rosebud Roberts ◽  
Malini Madhavan ◽  
Alejandro Rabinstein ◽  
Ruth Cha ◽  
...  

The objective of this study was to investigate the cross-sectional associations of atrial fibrillation with neuroimaging measures of cerebrovascular disease and Alzheimer’s disease-related pathology, and their interaction with cognitive impairment. MRI scans of non-demented individuals (n=1044) from the population-based Mayo Clinic Study of Aging were analyzed for infarctions, total grey matter, hippocampal and white matter hyperintensity volumes. A subset of 496 individuals underwent FDG and C-11 Pittsburgh compound B (PiB) PET scans. We assessed the associations of atrial fibrillation with i) categorical MRI measures (cortical and subcortical infarctions) using multivariable logistic regression models, and with ii) continuous MRI measures ( hippocampal, total grey matter, and white matter hyperintensity volumes) and FDG-PET and PiB-PET measures using multivariable linear regression models, and adjusting for confounders. Among participants who underwent MRI (median age, 77.8, 51.6% male), 13.5% had atrial fibrillation. Presence of atrial fibrillation was associated with subcortical infarctions (odds ratio [OR], 1.83; p=0.002), cortical infarctions (OR, 1.91; p=0.03), total grey matter volume (Beta [β], -.025, p<.0001) after controlling for age, education, gender, APOE e4 carrier status, coronary artery disease, diabetes, history of clinical stroke, and hypertension. However, atrial fibrillation was not associated with white matter hyperintensity volume, hippocampal volume, Alzheimer’s pattern of FDG hypometabolism or PiB uptake. There was a significant interaction of cortical infarction (p for interaction=0.004) and subcortical infarction (p for interaction =0.015) with atrial fibrillation with regards to odds of mild cognitive impairment (MCI). Using subjects with no atrial fibrillation and no infarction as the reference, the OR (95% confidence intervals [CI]) for MCI was 2.98 (1.66, 5.35;p = 0.0002) among participants with atrial fibrillation and any infarction, 0.69 (0.36, 1.33;p= 0.27) for atrial fibrillation and no infarction, and 1.50 (0.96, 2.32;p = 0.07) for no atrial fibrillation and any infarction. These data highlight that atrial fibrillation is associated with MCI in the presence of infarctions.


2019 ◽  
Vol 70 (3) ◽  
pp. 723-732 ◽  
Author(s):  
Carolina Alves ◽  
Lília Jorge ◽  
Nádia Canário ◽  
Beatriz Santiago ◽  
Isabel Santana ◽  
...  

2010 ◽  
Vol 120 (8) ◽  
pp. 544-550 ◽  
Author(s):  
David K. Johnson ◽  
Willis Barrow ◽  
RaeAnn Anderson ◽  
Amith Harsha ◽  
Robyn Honea ◽  
...  

2021 ◽  
Author(s):  
Thomas Veale ◽  
Ian B Malone ◽  
Teresa Poole ◽  
Thomas D Parker ◽  
Catherine F Slattery ◽  
...  

Pathological involvement of cerebral white matter in Alzheimer's disease has been shown using diffusion tensor imaging. Superficial white matter (SWM) changes have been relatively understudied despite their importance in cortico-cortical connections. Measuring SWM degeneration using diffusion tensor imaging is challenging due to its complex structure and proximity to the cortex. To overcome this we investigated diffusion MRI changes in young-onset Alzheimer's disease using standard diffusion tensor imaging and Neurite Orientation Dispersion and Density Imaging to distinguish between disease-related changes that are due to degeneration (e.g. loss of myelinated fibres) and those due to reorganisation (e.g. increased fibre dispersion). Twenty-nine young-onset Alzheimer's disease patients and 22 healthy controls had both single-shell and multi-shell diffusion MRI. We calculated fractional anisotropy, mean diffusivity, neurite density index, orientation dispersion index and tissue fraction (1-free water fraction). Diffusion metrics were sampled in 15 a priori regions of interest at four points along the cortical profile: cortical grey matter, the grey/white boundary, SWM (1mm below grey/white boundary) and SWM/deeper white matter (2mm below grey/white boundary). To estimate cross-sectional group differences, we used average marginal effects from linear mixed effect models of participants' diffusion metrics along the cortical profile. The SWM of young-onset Alzheimer's disease individuals had lower neurite density index compared to controls in five regions (superior and inferior parietal, precuneus, entorhinal and parahippocampus) (all P<0.05), and higher orientation dispersion index in three regions (fusiform, entorhinal and parahippocampus) (all P<0.05). Young-onset Alzheimer's disease individuals had lower fractional anisotropy in the SWM of two regions (entorhinal and parahippocampus) (both P<0.05) and higher fractional anisotropy within the postcentral region (P<0.05). Mean diffusivity in SWM was higher in the young-onset Alzheimer's disease group in the parahippocampal region (P<0.05) and lower in three regions (postcentral, precentral and superior temporal) (all P<0.05). In the overlying grey matter, disease-related changes were largely consistent with SWM findings when using neurite density index and fractional anisotropy, but appeared at odds with orientation dispersion and mean diffusivity SWM changes. Tissue fraction was significantly lower across all grey matter regions in young-onset Alzheimer's disease individuals (all P<0.001) but group differences reduced in magnitude and coverage when moving towards the SWM. These results show that microstructural changes occur within SWM and along the cortical profile in individuals with young-onset Alzheimer's disease. Lower neurite density and higher orientation dispersion suggests underlying SWM fibres undergo neurodegeneration and reorganisation, two effects previously indiscernible using standard diffusion tensor metrics in SWM.


Sign in / Sign up

Export Citation Format

Share Document