scholarly journals Prefrontal Multielectrode Transcranial Direct Current Stimulation Modulates Performance and Neural Activity Serving Visuospatial Processing

2020 ◽  
Vol 30 (9) ◽  
pp. 4847-4857
Author(s):  
Yasra Arif ◽  
Rachel K Spooner ◽  
Alex I Wiesman ◽  
Amy L Proskovec ◽  
Michael T Rezich ◽  
...  

Abstract The dorsolateral prefrontal cortex (DLPFC) is known to play a critical role in visuospatial attention and processing, but the relative contribution of the left versus right DLPFC remains poorly understood. We applied multielectrode transcranial direct-current stimulation (ME-tDCS) to the left and right DLPFC to investigate its net impact on behavioral performance and population-level neural activity. The primary hypothesis was that significant laterality effects would be observed in regard to behavior and neural oscillations. Twenty-five healthy adults underwent three visits (left, right, and sham ME-tDCS). Following stimulation, participants completed a visuospatial processing task during magnetoencephalography (MEG). Statistically significant oscillatory events were imaged, and time series were then extracted from the peak voxels of each response. Behavioral findings indicated differences in reaction time and accuracy, with left DLPFC stimulation being associated with slower responses and decreased accuracy compared to right stimulation. Left DLPFC stimulation was also associated with increases in spontaneous theta and decreases in gamma within occipital cortices relative to both right and sham stimulation, while connectivity among DLPFC and visual cortices was generally increased contralateral to stimulation. These data suggest spectrally specific modulation of spontaneous cortical activity at the network-level by ME-tDCS, with distinct outcomes based on the laterality of stimulation.

2015 ◽  
Vol 27 (12) ◽  
pp. 2382-2393 ◽  
Author(s):  
Raquel E. London ◽  
Heleen A. Slagter

Selection mechanisms that dynamically gate only relevant perceptual information for further processing and sustained representation in working memory are critical for goal-directed behavior. We examined whether this gating process can be modulated by anodal transcranial direct current stimulation (tDCS) over left dorsolateral pFC (DLPFC)—a region known to play a key role in working memory and conscious access. Specifically, we examined the effects of tDCS on the magnitude of the so-called “attentional blink” (AB), a deficit in identifying the second of two targets presented in rapid succession. Thirty-four participants performed a standard AB task before (baseline), during, and after 20 min of 1-mA anodal and cathodal tDCS in two separate sessions. On the basis of previous reports linking individual differences in AB magnitude to individual differences in DLPFC activity and on suggestions that effects of tDCS depend on baseline brain activity levels, we hypothesized that anodal tDCS over left DLPFC would modulate the magnitude of the AB as a function of individual baseline AB magnitude. Indeed, individual differences analyses revealed that anodal tDCS decreased the AB in participants with a large baseline AB but increased the AB in participants with a small baseline AB. This effect was only observed during (but not after) stimulation, was not found for cathodal tDCS, and could not be explained by regression to the mean. Notably, the effects of tDCS were not apparent at the group level, highlighting the importance of taking individual variability in performance into account when evaluating the effectiveness of tDCS. These findings support the idea that left DLPFC plays a critical role in the AB and in conscious access more generally. They are also in line with the notion that there is an optimal level of prefrontal activity for cognitive function, with both too little and too much activity hurting performance.


2020 ◽  
Vol 14 ◽  
Author(s):  
Yuzhao Yao ◽  
Xiuqin Jia ◽  
Jun Luo ◽  
Feiyan Chen ◽  
Peipeng Liang

Numerical inductive reasoning has been considered as one of the most important higher cognitive functions of the human brain. Importantly, previous behavioral studies have consistently reported that one critical component of numerical inductive reasoning is checking, which often occurs when a discrepant element is discovered, and reprocessing is needed to determine whether the discrepancy is an error of the original series. However, less is known about the neural mechanism underlying the checking process. Given that the checking effect involves cognitive control processes, such as the incongruent resolution, that are linked to the right dorsolateral prefrontal cortex (DLPFC), this study hypothesizes that the right DLPFC may play a specific role in the checking process. To test the hypothesis, this study utilized the transcranial direct current stimulation (tDCS), a non-invasive brain stimulation method that could modulate cortical excitability, and examined whether and how the stimulation of the right DLPFC via tDCS could modulate the checking effect during a number-series completion problem task. Ninety healthy participants were allocated to one of the anodal, cathodal, and sham groups. Subjects were required to verify whether number sequences formed rule-based series, and checking effect was assessed by the difference in performance between invalid and valid conditions. It was found that significantly longer response times (RTs) were exhibited in invalid condition compared with valid condition in groups of anodal, cathodal, and sham tDCS. Furthermore, the anodal tDCS significantly shortened the checking effect than those of the cathodal and sham groups, whereas no significantly prolonged checking effect was detected in the cathodal group. The current findings indicated that anodal tDCS affected the process of checking, which suggested that the right DLPFC might play a critical role in the checking process of numerical inductive reasoning by inhibiting incongruent response.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David Framorando ◽  
Tianlan Cai ◽  
Yi Wang ◽  
Alan J. Pegna

AbstractTranscranial Direct Current Stimulation (tDCS) has shown that stimulation of Dorsolateral Prefrontal Cortex (DLPFC) facilitates task performance in working-memory tasks. However, little is known about its potential effects on effort. This study examined whether tDCS affects effort during a working-memory task. Participants received anodal, cathodal and sham stimulation over DLPFC across three sessions before carrying out a 2-back task. During the task, effort-related cardiovascular measures were recorded—especially the Initial Systolic Time Interval (ISTI). Results showed that anodal stimulation produced a shorter ISTI, indicating a greater effort compared to cathodal and sham conditions, where effort was lower. These findings demonstrate that anodal stimulation helps participants to maintain engagement in a highly demanding task (by increasing task mastery), without which they would otherwise disengage. This study is the first to show that tDCS impacts the extent of effort engaged by individuals during a difficult task.


2019 ◽  
Vol 39 (27) ◽  
pp. 5326-5335 ◽  
Author(s):  
Benjamin Meyer ◽  
Caroline Mann ◽  
Manuela Götz ◽  
Anna Gerlicher ◽  
Victor Saase ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document