scholarly journals The Rich-Club Organization in Rat Functional Brain Network to Balance Between Communication Cost and Efficiency

2017 ◽  
Vol 28 (3) ◽  
pp. 924-935 ◽  
Author(s):  
Xia Liang ◽  
Li-Ming Hsu ◽  
Hanbing Lu ◽  
Akira Sumiyoshi ◽  
Yong He ◽  
...  
2021 ◽  
Vol 15 ◽  
Author(s):  
Jared A. Rowland ◽  
Jennifer R. Stapleton-Kotloski ◽  
Greg E. Alberto ◽  
April T. Davenport ◽  
Phillip M. Epperly ◽  
...  

Purpose: A fundamental question for Alcohol use disorder (AUD) is how and when naïve brain networks are reorganized in response to alcohol consumption. The current study aimed to determine the progression of alcohol’s effect on functional brain networks during transition from the naïve state to chronic consumption.Procedures: Resting-state brain networks of six female rhesus macaque (Macaca mulatta) monkeys were acquired using magnetoencephalography (MEG) prior to alcohol exposure and after free-access to alcohol using a well-established model of chronic heavy alcohol consumption. Functional brain network metrics were derived at each time point.Results: The average connection frequency (p < 0.024) and membership of the Rich Club (p < 0.022) changed significantly over time. Metrics describing network topology remained relatively stable from baseline to free-access drinking. The minimum degree of the Rich Club prior to alcohol exposure was significantly predictive of future free-access drinking (r = −0.88, p < 0.001).Conclusions: Results suggest naïve brain network characteristics may be used to predict future alcohol consumption, and that alcohol consumption alters functional brain networks, shifting hubs and Rich Club membership away from previous regions in a non-systematic manner. Further work to refine these relationships may lead to the identification of a high-risk drinking phenotype.


2021 ◽  
Author(s):  
Alireza Fathian ◽  
Yousef Jamali ◽  
Mohammad Reza Raoufy

Abstract Alzheimer’s disease (AD) is a progressive disorder associated with cognitive dysfunction that alters the brain’s functional connectivity. Assessing these alterations has become a topic of increasing interest. However, a few studies have examined different stages of AD from a complex network perspective that cover different topological scales. This study analyzed the trend of functional connectivity alterations from a cognitively normal (CN) state through early and late mild cognitive impairment (EMCI and LMCI) and to Alzheimer’s disease. The analyses had been done at the local (hubs and activated links and areas), meso (clustering, assortativity, and rich-club), and global (small-world, small-worldness, and efficiency) topological scales. The results showed that the trends of changes in the topological architecture of the functional brain network were not entirely proportional to the AD progression, and these trends behaved differently at the earliest stage of the disease, i.e., EMCI. Further, it has been indicated that the diseased groups engaged somatomotor, frontoparietal, and default mode modules compared to the CN group. The diseased groups also shifted the functional network towards more random architecture. In the end, The methods introduced in this paper enable us to gain an extensive understanding of the pathological changes of the AD process.


2020 ◽  
Author(s):  
Jared A. Rowland ◽  
Jennifer R. Stapleton-Kotloski ◽  
Greg E. Alberto ◽  
April T. Davenport ◽  
Phillip M. Epperly ◽  
...  

AbstractA fundamental question for alcohol use disorder is how naïve brain networks are reorganized in response to the consumption of alcohol. The current study aimed to determine the progression of alcohol’s effect on functional brain networks during the transition from naïve, to early, to chronic consumption. Resting-state brain networks of six female monkeys were acquired using magnetoencephalography prior to alcohol exposure, after early exposure, and after free-access to alcohol using a well-established model of chronic heavy alcohol use. Functional brain network metrics were derived at each time point. Assortativity, average connection frequency, and number of gamma connections changed significantly over time. All metrics remained relatively stable from naïve to early drinking, and displayed significant changes following increased quantity of alcohol consumption. The assortativity coefficient was significantly less negative (p=.043), connection frequency increased (p=.03), and gamma connections increased (p=.034). Further, brain regions considered hubs (p=.037) and members of the Rich Club (p=.012) became less common across animals following the introduction of alcohol. The minimum degree of the Rich Club prior to alcohol exposure was significantly predictive of future free-access drinking (r=-.88, p<.001). Results suggest naïve brain network characteristics may be used to predict future alcohol consumption, and that alcohol consumption alters the topology of functional brain networks, shifting hubs and Rich Club membership away from previous regions in a non-systematic manner. Further work to refine these relationships may lead to the identification of a high-risk AUD phenotype.


2021 ◽  
Author(s):  
Silvia Minosse ◽  
Eliseo Picchi ◽  
Francesca Di Giuliano ◽  
Loredana Sarmati ◽  
Elisabetta Teti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document