scholarly journals Ir76b is a Co-receptor for Amine Responses in Drosophila Olfactory Neurons

2021 ◽  
Vol 15 ◽  
Author(s):  
Alina Vulpe ◽  
Karen Menuz

Two large families of olfactory receptors, the Odorant Receptors (ORs) and Ionotropic Receptors (IRs), mediate responses to most odors in the insect olfactory system. Individual odorant binding “tuning” OrX receptors are expressed by olfactory neurons in basiconic and trichoid sensilla and require the co-receptor Orco. The situation for IRs is more complex. Different tuning IrX receptors are expressed by olfactory neurons in coeloconic sensilla and rely on either the Ir25a or Ir8a co-receptors; some evidence suggests that Ir76b may also act as a co-receptor, but its function has not been systematically examined. Surprisingly, recent data indicate that nearly all coeloconic olfactory neurons co-express Ir25a, Ir8a, and Ir76b. Here, we demonstrate that Ir76b and Ir25a function together in all amine-sensing olfactory receptor neurons. In most neurons, loss of either co-receptor abolishes amine responses. In contrast, amine responses persist in the absence of Ir76b or Ir25a in ac1 sensilla but are lost in a double mutant. We show that responses mediated by acid-sensing neurons do not require Ir76b, despite their expression of this co-receptor. Our study also demonstrates that one population of coeloconic olfactory neurons exhibits Ir76b/Ir25a-dependent and Orco-dependent responses to distinct odorants. Together, our data establish the role of Ir76b as a bona fide co-receptor, which acts in partnership with Ir25a. Given that these co-receptors are among the most highly conserved olfactory receptors and are often co-expressed in chemosensory neurons, our data suggest Ir76b and Ir25a also work in tandem in other insects.

2004 ◽  
Vol 123 (2) ◽  
pp. 99-107 ◽  
Author(s):  
Ivan Manzini ◽  
Detlev Schild

In olfactory receptor neurons (ORNs) of aquatic animals amino acids have been shown to be potent stimuli. Here we report on calcium imaging experiments in slices of the olfactory mucosa of Xenopus laevis tadpoles. We were able to determine the response profiles of 283 ORNs to 19 amino acids, where one profile comprises the responses of one ORN to 19 amino acids. 204 out of the 283 response profiles differed from each other. 36 response spectra occurred more than once, i.e., there were 36 classes of ORNs identically responding to the 19 amino acids. The number of ORNs that formed a class ranged from 2 to 13. Shape and duration of amino acid-elicited [Ca2+]i transients showed a high degree of similarity upon repeated stimulation with the same amino acid. Different amino acids, however, in some cases led to clearly distinguishable calcium responses in individual ORNs. Furthermore, ORNs clearly appeared to gain selectivity over time, i.e., ORNs of later developmental stages responded to less amino acids than ORNs of earlier stages. We discuss the narrowing of ORN selectivity over stages in the context of expression of olfactory receptors.


2017 ◽  
Author(s):  
Gautam Reddy ◽  
Joseph Zak ◽  
Massimo Vergassola ◽  
Venkatesh N. Murthy

AbstractNatural environments feature mixtures of odorants of diverse quantities, qualities and complexities. Olfactory receptor neurons (ORNs) are the first layer in the sensory pathway and transmit the olfactory signal to higher regions of the brain. Yet, the response of ORNs to mixtures is strongly non-additive, and exhibits antagonistic interactions among odorants. Here, we model the processing of mixtures by mammalian ORNs, focusing on the role of inhibitory mechanisms. Theoretically predicted response curves capture experimentally determined glomerular responses imaged by a calcium indicator expressed in ORNs of live, breathing mice. Antagonism leads to an effective “normalization” of the ensemble glomerular response, which arises from a novel mechanism involving the distinct statistical properties of receptor binding and activation, without any recurrent neuronal circuitry. Normalization allows our encoding model to outperform noninteracting models in odor discrimination tasks, and to explain several psychophysical experiments in humans.


Author(s):  
Colleen N. McLaughlin ◽  
Maria Brbić ◽  
Qijing Xie ◽  
Tongchao Li ◽  
Felix Horns ◽  
...  

AbstractRecognition of environmental cues is essential for the survival of all organisms. Precise transcriptional changes occur to enable the generation and function of the neural circuits underlying sensory perception. To gain insight into these changes, we generated single-cell transcriptomes of Drosophila olfactory receptor neurons (ORNs), thermosensory and hygrosensory neurons from the third antennal segment at an early developmental and adult stage. We discovered that ORNs maintain expression of the same olfactory receptors across development. Using these receptors and computational approaches, we matched transcriptomic clusters corresponding to anatomically and physiologically defined neuronal types across multiple developmental stages. Cell-type-specific transcriptomes, in part, reflected axon trajectory choices in early development and sensory modality in adults. Our analysis also uncovered type-specific and broadly expressed genes that could modulate adult sensory responses. Collectively, our data reveal important transcriptomic features of sensory neuron biology and provides a resource for future studies of their development and physiology.


2018 ◽  
Author(s):  
Joseph D. Zak ◽  
Julien Grimaud ◽  
Rong-Chang Li ◽  
Chih-Chun Lin ◽  
Venkatesh N. Murthy

AbstractThe calcium-activated chloride channel anoctamin-2 (Ano2) is thought to amplify transduction currents in ORNs, a hypothesis supported by previous studies in dissociated neurons from Ano2-/- mice. Paradoxically, despite a reduction in transduction currents in Ano2-/- ORNs, their spike output for odor stimuli may be higher. We examined the role of Ano2 in ORNs in their native environment in freely breathing mice by imaging activity in ORN axons as they arrive in the olfactory bulb glomeruli. Odor-evoked responses in ORN axons of Ano2-/- mice were consistently larger for a variety of odorants and concentrations. In an open arena, Ano2-/- mice took longer to approach a localized odor source than wild-type mice, revealing clear olfactory behavioral deficits. Our studies provide the first in vivo evidence toward an alternative role for Ano2 in the olfactory transduction cascade, where it may serve as a feedback mechanism to clamp ORN spike output.


2019 ◽  
Author(s):  
Hongjie Li ◽  
Tongchao Li ◽  
Felix Horns ◽  
Jiefu Li ◽  
Qijing Xie ◽  
...  

The ultimate function of a neuron is determined by both its physiology and connectivity, but the transcriptional regulatory mechanisms that coordinate these two features are not well understood1–4. The Drosophila Olfactory receptor neurons (ORNs) provide an excellent system to investigate this question. As in mammals5, each Drosophila ORN class is defined by the expression of a single olfactory receptor or a unique combination thereof, which determines their odor responses, and by the single glomerulus to which their axons target, which determines how sensory signals are represented in the brain6–10. In mammals, the coordination of olfactory receptor expression and wiring specificity is accomplished in part by olfactory receptors themselves regulating ORN wiring specificity11–13. However, Drosophila olfactory receptors do not instruct axon targeting6, 14, raising the question as to how receptor expression and wiring specificity are coordinated. Using single-cell RNA-sequencing and genetic analysis, we identified 33 transcriptomic clusters for fly ORNs. We unambiguously mapped 17 to glomerular classes, demonstrating that transcriptomic clusters correspond well with anatomically and physiologically defined ORN classes. We found that each ORN expresses ~150 transcription factors (TFs), and identified a master TF that regulates both olfactory receptor expression and wiring specificity. A second TF plays distinct roles, regulating only receptor expression in one class and only wiring in another. Thus, fly ORNs utilize diverse transcriptional strategies to coordinate physiology and connectivity.


2009 ◽  
Vol 190 (1) ◽  
pp. 66-73 ◽  
Author(s):  
Benjamin B. Tournier ◽  
Sandrine Frelon ◽  
Elie Tourlonias ◽  
Laurence Agez ◽  
Olivia Delissen ◽  
...  

1999 ◽  
Vol 85 (1-2) ◽  
pp. 103-110 ◽  
Author(s):  
Kaori Aoki ◽  
Yoko Nakahara ◽  
Shumpei Yamada ◽  
Kazuhiro Eto

1998 ◽  
Vol 79 (3) ◽  
pp. 1349-1359 ◽  
Author(s):  
Aslbek B. Zhainazarov ◽  
Richard E. Doolin ◽  
Barry W. Ache

Zhainazarov, Aslbek B., Richard E. Doolin, and Barry W. Ache. Sodium-gated cation channel implicated in the activation of lobster olfactory receptor neurons. J. Neurophysiol. 79: 1349–1359, 1998. The role of Na+-activated channels in cellular function, if any, is still elusive. We have attempted to implicate a Na+-activated nonselective cation channel in the activation of lobster olfactory receptor neurons. We show that a Na+-activated channel occurs in the odor-detecting outer dendrites. With the use of pharmacological blockers of the channel together with ion substitution, we show that a substantial part of the odor-evoked depolarization in these cells can be ascribed to a Na+-activated conductance. We hypothesize, therefore, that the Na+-activated channel amplifies the receptor current as a result of being secondarily activated by the primary odor transduction pathway.


2005 ◽  
Vol 94 (3) ◽  
pp. 1781-1788 ◽  
Author(s):  
Rodolfo Madrid ◽  
Ricardo Delgado ◽  
Juan Bacigalupo

Odor stimulation may excite or inhibit olfactory receptor neurons (ORNs). It is well established that the excitatory response involves a cyclic AMP (cAMP) transduction mechanism that activates a nonselective cationic cyclic nucleotide-gated (CNG) conductance, accompanied by the activation of a Ca2+-dependent Cl− conductance, both causing a depolarizing receptor potential. In contrast, odor inhibition is attributed to a hyperpolarizing receptor potential. It has been proposed that a Ca2+-dependent K+ (KCa) conductance plays a key role in odor inhibition, both in toad and rat isolated olfactory neurons. The mechanism underlying odor inhibition has remained elusive. We assessed its study using various pharmacological agents and caged compounds for cAMP, Ca2+, and inositol 1,4,5-triphosphate (InsP3) on isolated toad ORNs. The odor-triggered KCa current was reduced on exposing the cell either to the CNG channel blocker LY83583 (20 μM) or to the adenylyl cyclase inhibitor SQ22536 (100 μM). Photorelease of caged Ca2+ activated a Cl− current sensitive to niflumic acid (10 μM) and a K+ current blockable by charybdotoxin (20 nM) and iberiotoxin (20 nM). In contrast, photoreleased Ca2+ had no effect on cells missing their cilia, indicating that these conductances are confined to the cilia. Photorelease of cAMP induced a charybdotoxin-sensitive K+ current in intact ORNs. Photorelease of InsP3 did not increase the membrane conductance of olfactory neurons, arguing against a direct role of InsP3 in chemotransduction. We conclude that a cAMP cascade mediates the activation of the ciliary Ca2+-dependent K+ current and that the Ca2+ ions that activate the inhibitory current enter the cilia through CNG channels.


Sign in / Sign up

Export Citation Format

Share Document