scholarly journals Function and Immunocytochemical Localization of Two Novel Odorant-Binding Proteins in Olfactory Sensilla of the Scarab Beetle Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae)

2011 ◽  
Vol 37 (2) ◽  
pp. 141-150 ◽  
Author(s):  
S. Deng ◽  
J. Yin ◽  
T. Zhong ◽  
Y. Cao ◽  
K. Li
eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Nikki K Larter ◽  
Jennifer S Sun ◽  
John R Carlson

Odorant binding proteins (Obps) are remarkable in their number, diversity, and abundance, yet their role in olfactory coding remains unclear. They are widely believed to be required for transporting hydrophobic odorants through an aqueous lymph to odorant receptors. We construct a map of the Drosophila antenna, in which the abundant Obps are mapped to olfactory sensilla with defined functions. The results lay a foundation for an incisive analysis of Obp function. The map identifies a sensillum type that contains a single abundant Obp, Obp28a. Surprisingly, deletion of the sole abundant Obp in these sensilla does not reduce the magnitude of their olfactory responses. The results suggest that this Obp is not required for odorant transport and that this sensillum does not require an abundant Obp. The results further suggest a novel role for this Obp in buffering changes in the odor environment, perhaps providing a molecular form of gain control.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7054 ◽  
Author(s):  
Angélica González-González ◽  
María E. Rubio-Meléndez ◽  
Gabriel I. Ballesteros ◽  
Claudio C. Ramírez ◽  
Rubén Palma-Millanao

In this study, we addressed the sex- and tissue-specific expression patterns of odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) in Hylamorpha elegans (Burmeister), an important native scarab beetle pest species from Chile. Similar to other members of its family, this scarab beetle exhibit habits that make difficult to control the pest by conventional methods. Hence, alternative ways to manage the pest populations based on chemical communication and signaling (such as disrupting mating or host finding process) are highly desirable. However, developing pest-control methods based on chemical communication requires to understand the molecular basis for pheromone recognition/chemical perception in this species. Thus, with the aim of discovering olfaction-related genes, we obtained the first reference transcriptome assembly of H. elegans. We used different tissues of adult beetles from males and females: antennae and maxillary palps, which are well known for embedded sensory organs. Then, the expression of predicted odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) was analyzed by qRT-PCR. In total, 165 transcripts related to chemoperception were predicted. Of these, 16 OBPs, including one pheromone-binding protein (PBP), and four CSPs were successfully amplified by qRT-PCR. All of these genes were differentially expressed in the sensory tissues with respect to the tibial tissue that was used as a control. The single predicted PBP found was highly expressed in the antennal tissues, particularly in males, while several OBPs and one CSP showed male-biased expression patterns, suggesting that these proteins may participate in sexual recognition process. In addition, a single CSP was expressed at higher levels in female palps than in any other studied condition, suggesting that this CSP would participate in oviposition process. Finally, all four CSPs exhibited palp-biased expression while mixed results were obtained for the expression of the OBPs, which were more abundant in the palps than in the antennae. These results suggest that these chemoperception proteins would be interesting novel targets for control of H. elegans, thus providing a theoretical basis for further studies involving new pest control methods.


Insects ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 302
Author(s):  
Jing ◽  
Zhang ◽  
Bai ◽  
Prabu ◽  
He ◽  
...  

Insects recognize odorous compounds using sensory neurons organized in olfactory sensilla. The process odor detection in insects requires an ensemble of proteins, including odorant binding proteins, olfactory receptors, and odor degrading enzymes; each of them are encoded by multigene families. Most functional proteins seem to be broadly tuned, responding to multiple chemical compounds with different, but mostly quite similar structures. Based on the hypothesis that insects recognize host volatiles by means of general odorant binding proteins (GOBPs), the current study aimed to characterize GOBPs of the yellow peach moth, Conogethes punctiferalis (Guenée). In oviposition preference tests, it was found that the yellow peach moth preferred volatiles from Prunus persica (peach) in finding their host plant. Exposure of the moth to volatiles from peaches affected the expression level of GOBP genes. Binding affinity of GOBPs from yellow peach moth was assessed for 16 host plant volatiles and 2 sex pheromones. The fluorescence ligand-binding assays revealed highest affinities for hexadecanal, farnesol, and limonene with KD values of 0.55 ± 0.08, 0.35 ± 0.04, and 1.54 ± 0.39, respectively. The binding sites of GOBPs from yellow peach moth were predicted using homology modeling and characterized using molecular docking approaches. The results indicated the best binding affinity of both GOBP1 and GOBP2 for farnesol, with scores of −7.4 and −8.5 kcal/mol. Thus, GOBPs may play an important role in the process of finding host plants.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e84795 ◽  
Author(s):  
Bing Wang ◽  
Li Guan ◽  
Tao Zhong ◽  
Kebin Li ◽  
Jiao Yin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document