yellow peach moth
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 12)

H-INDEX

11
(FIVE YEARS 0)

Author(s):  
Honggang Guo ◽  
Li Meng ◽  
Minzhao Zhang ◽  
Zhengguang Ren ◽  
Xiaochun Qin ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 455
Author(s):  
Na Ra Jeong ◽  
Min Jee Kim ◽  
Sung-Soo Kim ◽  
Sei-Woong Choi ◽  
Iksoo Kim

Conogethes pinicolalis has long been considered as a Pinaceae-feeding type of the yellow peach moth, C. punctiferalis, in Korea. In this study, the divergence of C. pinicolalis from the fruit-feeding moth C. punctiferalis was analyzed in terms of morphology, ecology, and genetics. C. pinicolalis differs from C. punctiferalis in several morphological features. Through field observation, we confirmed that pine trees are the host plants for the first generation of C. pinicolalis larvae, in contrast to fruit-feeding C. punctiferalis larvae. We successfully reared C. pinicolalis larvae to adults by providing them pine needles as a diet. From a genetic perspective, the sequences of mitochondrial COI of these two species substantially diverged by an average of 5.46%; moreover, phylogenetic analysis clearly assigned each species to an independent clade. On the other hand, nuclear EF1α showed a lower sequence divergence (2.10%) than COI. Overall, EF1α-based phylogenetic analysis confirmed each species as an independent clade, but a few haplotypes of EF1α indicated incomplete lineage sorting between these two species. In conclusion, our results demonstrate that C. pinicolalis is an independent species according to general taxonomic criteria; however, analysis of the EF1α sequence revealed a short divergence time.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 335
Author(s):  
Su Mon Shwe ◽  
Sivaprasath Prabu ◽  
Yu Chen ◽  
Qincheng Li ◽  
Dapeng Jing ◽  
...  

Yellow Peach Moth (YPM), Conogethes punctiferalis (Guenée), is one of the most destructive maize pests in the Huang-Huai-Hai summer maize region of China. Transgenic Bacillus thuringiensis (Bt) maize provides an effective means to control this insect pest in field trials. However, the establishment of Bt resistance to target pests is endangering the continued success of Bt crops. To use Bt maize against YPM, the baseline susceptibility of the local populations in the targeted areas needs to be verified. Diet-overlay bioassay results showed that all the fourteen YPM populations in China are highly susceptible to Cry1Ab. The LC50 values ranged from 0.35 to 2.38 ng/cm2 over the two years of the collection, and the difference between the most susceptible and most tolerant populations was sevenfold. The upper limit of the LC99 estimates of six pooled populations produced >99% larval mortality for representative eight populations collected in 2020 and was designated as diagnostic concentrations for monitoring susceptibility in YPM populations in China. Hence, we evaluated the laboratory selection of resistance in YPM to Cry1Ab using the diet-overlay bioassay method. Although the resistant ratio was generally low, YPM potentially could evolve resistance to Cry1Ab. The potential developmentof resistance by target pests points out the necessity to implement resistance management strategies for delaying the establishment of pest resistance to Bt crops.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiuying Chen ◽  
Xi Yang ◽  
Dongrui You ◽  
Jiaojiao Luo ◽  
Xiaojing Hu ◽  
...  

Insects are behaviorally and physiologically affected by different light conditions, including photoperiod, light intensity, and spectrum. Light at night has important influences on nocturnal insects, including most moth species. Moth copulation and mating usually occur at night. Although a few studies examine changes in insect mating under artificial light at night, detailed influences of light, such as that of monochromatic light, on moth mating remain largely unknown. In this study, on the basis of long-term insects rearing experience, dim red light (spectrum range: 610–710nm, with a peak at 660nm; 2.0 Lux) during scotophase was hypothesized to enhance mating in the yellow peach moth, Conogethes punctiferalis. To test the hypothesis, the mating of moths under dim red, blue, and white lights during scotophase was observed. Under the dim red light, the enhancement of mating in C. punctiferalis was observed. In addition, the electroantennografic response of males against the female sex pheromone increased with red light treatment during scotophase. In an analysis of the differentially expressed genes in the antennae of males under red light and dark conditions, the expression levels of two odorant-binding protein (OBP) genes, CpunOBP2 and CpunPBP5, were up-regulated. Two genes were then expressed in Escherichia coli, and the recombinant proteins showed strong binding to female pheromone components in fluorescence-binding assays. Thus, the results of this study indicated that dim red light at night enhanced the mating of C. punctiferalis. One of the mechanisms for the enhancement was probably an increase in the antennal sensitivity of males to the female sex pheromone under red light that was caused by increases in the expression levels of pheromone-binding protein genes in male antennae.


Author(s):  
Dapeng Jing ◽  
Tiantao Zhang ◽  
Shuxiong Bai ◽  
Kanglai He ◽  
Sivaprasath Prabu ◽  
...  

2020 ◽  
Author(s):  
Dapeng Jing ◽  
Tiantao Zhang ◽  
Shuxiong Bai ◽  
Kanglai He ◽  
Sivaprasath Prabu ◽  
...  

Abstract Background: Conogethes pinicolalis (Lepidoptera: Crambidae), is similar to Conogethes punctiferalis (yellow peach moth) and its host plant is gymnosperms , especially for masson pine. So far, less literature was reported on this pest. In the present study, we sequenced and characterized the antennal transcriptomes of male and female C. pinicolalis for the first time. Results: Totally, 26 odorant-binding protein (OBP) genes, 19 chemosensory protein (CSP) genes, 55 odorant receptor (OR) genes and 20 ionotropic receptor (IR) genes were identified from the C. pinicolalis antennae transcriptome and amino sequences were annotated against homologs of C. punctiferalis . The neighbor-joining tree indicated that the amino acid sequence of olfactory related genes is highly homologous with C. punctiferalis . Furthermore, the reference genes were selected, and we recommended the phosphate dehydrogenase gene (GAPDH) or ribosomal protein 49 gene (RP49) to verify the target gene expression during larval development stages and RP49 or ribosomal protein L13 gene (RPL13) for adult tissues. Conclusions: Our study provides a starting point on the molecular level characterization between C. pinicolalis and C. punctiferalis , which might be supportive for pest management studies in future.


2019 ◽  
Author(s):  
Dapeng Jing ◽  
Tiantao Zhang ◽  
Shuxiong Bai ◽  
Kanglai He ◽  
Sivaprasath Prabu ◽  
...  

Abstract Background Conogethes pinicolalis (Lepidoptera: Crambidae), is similar to Conogethes punctiferalis (yellow peach moth) and its host plant is gymnosperms, especially for masson pine. So far, less literature was reported on this pest. In present study, we sequenced and characterized the antennal transcriptomes of male and female C. pinicolalis for the first time. Results Totally, 26 odorant-binding proteins (OBP) genes, 19 chemosensory proteins (CSP) genes, 55 odorant receptors (OR) genes and 20 ionotropic receptors (IR) genes were identified from the C. pinicolalis antennae transcriptome and most of them were olfactory genes, amino sequences were annotated against homologs of C. punctiferalis. The neighbor-joining tree indicated that the amino acid sequence of olfactory related genes is highly homologous with C. punctiferalis. Furthermore, the reference genes were selected, and we strongly recommended the GAPDH or RP49 to verify gene expression for larvae development and RP49 or RPL13 for adult tissues. Conclusions Our study provides a starting point on the molecular level characterization between C. pinicolalis and C. punctiferalis, which might be a supportive for pest management studies in future.


Sign in / Sign up

Export Citation Format

Share Document