olfactory sensilla
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 19)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 15 ◽  
Author(s):  
Wan-Ying Dong ◽  
Bing Wang ◽  
Gui-Rong Wang

The olfactory sensing system of the syrphid fly Eupeodes corollae is essential in pollination and prey localization, but little is known about the ultrastructural organization of their olfactory organs. In this study, the morphology, distribution, and ultrastructural organization of antennal sensilla of E. corollae in both sexes were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Neuronal responses of a subtype of sensilla basiconica to floral scent compounds were recorded by single sensillum recording (SSR). Ten morphological types, including Böhm bristles, sensilla chaetica, microtrichiae, sensilla trichodea, sensilla basiconica, sensilla clavate, sensilla coeloconica, sensilla styloconica, sensilla placodea, and sensory pit, were identified. Except for Böhm bristles and sensilla chaetica, which were distributed on the scape and pedicel of E. corollae antennae, innervated sensilla were densely distributed on the flagellum, a vital sensory organ. Further, observing ultrastructural organization showed that the sensilla trichodea, basiconica, and clavate are single-walled with multiple nanoscale pores perforating the cuticle. Sensilla coeloconica are double-walled and have no wall pores, but instead, have longitudinal grooves along with the pegs. Sensilla chaetica, Böhm bristles, and microtrichiae did not have wall pores on the cuticle or sensory cells at the base. The SSR results indicated that neuron B housed in the subtype of sensilla basiconica I (SBI) mainly responded to methyl eugenol and other aromatic compounds. Overall, our results provide valuable information to understand the morphology and ultrastructure of antennal sensilla from E. corollae. These findings are beneficial for the studies of the neuronal function map of olfactory sensilla and for determining evolutionary relationships in Diptera.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 998
Author(s):  
Basman H. Al-Jalely ◽  
Wei Xu

Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) is a tiny natural egg parasitoid of several agricultural pest insects, which has been widely used in the biological control for Plutella xylostella, Helicoverpa armigera, Spodoptera frugiperda and Ectomyelois ceratoniae. However, limited studies have been conducted on T. pretiosum olfactory system, which is critical in regulating insect behaviours. In this study, T. pretiosum adult antennae were investigated under ascanning electron microscopy (SEM). Four types of olfactory sensilla were observed, including chaetica sensilla (CS), trichoid sensilla (TS), faleate sensilla (FS) and placoid sensilla (PS). Using T. pretiosum genome, 22 putative odorant binding proteins (OBPs) and 105 odorant receptors (ORs) were identified, which were further compared with olfactory genes of Apis mellifera, Nasonia vitripennis and Diachasma alloeum. The expression patterns of OBPs between T. pretiosum male and female adults were examined by quantitative real time PCR (qRT-PCR) approaches. Three female-specific OBPs (TpreOBP19, TpreOBP15 and TpreOBP3) were identified, which may play crucial roles in T. pretiosum host-seeking and oviposition behaviours. This study enriches our knowledge of T. pretiosum olfactory genes and improves our understanding of its olfactory system.


Author(s):  
Elisabeth Adam ◽  
Bill S. Hansson ◽  
Markus Knaden

Insect pollinators, like the tobacco hawkmoth Manduca sexta, are known for locating flowers and learning floral odors by using their antennae. A recent study revealed, however, that the tobacco hawkmoth additionally possesses olfactory sensilla at the tip of its proboscis. Here, we ask whether this second “nose” of the hawkmoth is similarly involved in odor learning as are the antennae. We first show that Manduca foraging efficiency at Nicotiana attenuata flowers increases with experience. This raises the question whether olfactory learning with the proboscis is playing a role during flower handling. By rewarding the moths at an artificial flower, we show that – while moths learn an odor easily when they perceive it with their antennae – experiencing the odor just with the proboscis is not sufficient for odor learning. Furthermore, experiencing the odor with the antennae during training does not affect the behavior of the moths when they later can detect the learned odor with the proboscis only. Therefore, there seems to be no cross-talk between antennae and proboscis and information learnt by the antennae cannot be retrieved by the proboscis.


2021 ◽  
Vol 84 ◽  
pp. 69-73
Author(s):  
Anna V. Diakova ◽  
Alexey A. Polilov

Extreme miniaturization implies a high degree of optimization, rendering the retention of non-functional organs almost impossible. Two unique non-porous placoid sensilla on the antennae of females of Megaphragma were described in the literature. Placoid sensilla in Hymenoptera have an olfactory function and always bear pores; the apparent absence of pores therefore raises the questions whether such sensilla are functional in Megaphragma and whether their surface sculpture had been sufficiently well examined. We examined in detail the external microsculpture and internal ultrastructure of the placoid sensilla using Focused Ion Beam Scanning Electron Microscopy and Scanning Electron Microscopy with various types of sputtering and show that these sensilla actually have a porous cuticle and are innervated by 11 or 12 neurons with branched cilia, which is typical of olfactory sensilla. Comparison of various methods of electron microscopy allows us to conclude that for an accurate determination of the morphofunctional types of sensilla, especially in miniature insects, it is necessary to study both the internal ultrastructure of the sensilla and their external morphology using carefully selected scanning electron microscopy methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hui Ai ◽  
Yuying Liu ◽  
Guangyan Long ◽  
Yuan Yuan ◽  
Shaopei Huang ◽  
...  

AbstractInsect olfaction system plays a key role in the foraging food, pollination, mating, oviposition, reproduction and other insect physiological behavior. Odorant binding protein are widely found in the various olfactory sensilla of different insect antennae and involved in chemical signals discrimination from natural environment. In this study, a novel OBP gene, MvitOBP3 is identified from the legume pod borer, Maruca vitrata, which it mainly harms important legume vegetables including cowpea, soybean and lablab bean. Real-time PCR results demonstrated that MvitOBP3 gene was abundantly expressed in the antennal tissue of M. vitrata, while low levels were distributed in the head, thorax, abdomen, leg and wing of adult moths. The recombinant OBP3 protein was purified using the prokaryotic expression and affinity chromatography system. Fluorescence competitive binding experiments indicated that that MvitOBP3 protein exhibited greater binding affinities with host-plant flower volatiles including Butanoic acid butyl ester, Limonene, 1H-indol-4-ol and 2-methyl-3-phenylpropanal, highlighting they may have attractant activities for the oviposition of female moths on the legume vegetables. Moreover, protein homology modeling and molecular docking analysis revealed that there are six amino acid sites of MvitOBP3 involved in the binding of the host-plant volatiles. These findings will further promote to understand the key role of odorant binding protein during host perception and oviposition of M. vitrata moths, which improve the efficiency of semiochemical-based prevention and monitoring for this pest in the legume vegetables field.


Secret Worlds ◽  
2021 ◽  
pp. 136-159
Author(s):  
Martin Stevens

This chapter discusses the sense of smell of animals. One way of acquiring information from chemicals in the world is through smell. Just as with the other senses, smell is used for many things, from finding food, judging relatedness and kin, locating and assessing potential mates, marking and defending territories, and much more. The chapter focuses first on ants, which are quite representative of how olfaction broadly works in nature. Located on the antennae of many insects are the main sensory receptors for encoding aspects of the world, from temperature and humidity through to pressure. In insect olfaction, the organs in which the receptors are housed are the olfactory sensilla. Meanwhile, the sense of smell of dogs has contributed to their long working relationship with humans, from help in hunting to search and rescue. After being domesticated for so long, dogs are also extremely good at reading humans, and this has clearly been a valuable trait for breeders in producing a variety of working and companion dogs. Finally, the chapter looks at the eastern American mole, which is one of the several mammals that has been shown to smell in stereo. The findings in the stereo mole essentially parallel some of the features of sound detection, rather like the way in which owls zero in on hidden prey based on the noises they make.


2021 ◽  
Author(s):  
Hui Ai ◽  
Yuying Liu ◽  
Guangyan Long ◽  
Yuan Yuan ◽  
Shaopei Huang ◽  
...  

Abstract Insect olfaction system plays a key role in the foraging food, pollination, mating, oviposition, reproduction and other insect physiological behavior. Odorant binding protein are widely found in the various olfactory sensilla of different insect antennae and involved in chemical signals discrimination from natural environment. In this study, a novel OBP gene, MvitOBP3 is identified from the legume pod borer, Maruca vitrata, which it mainly harms important legume vegetables including cowpea, soybean and lablab bean. Real-time PCR results demonstrated that MvitOBP3 gene was abundantly expressed in the antennal tissue of M. vitrata, while low levels were distributed in the head, thorax, abdomen, leg and wing of adult moths. The recombinant OBP3 protein was purified using the prokaryotic expression and affinity chromatography system. Fluorescence competitive binding experiments indicated that that MvitOBP3 protein exhibited greater binding affinities with host-plant flower volatiles including Butanoic acid butyl ester, Limonene, 1H-indol-4-ol and 2-methyl-3-phenylpropanal, highlighting they may have attractant activities for the oviposition of female moths on the legume vegetables. Moreover, protein homology modeling and molecular docking analysis revealed that there are six amino acid sites of MvitOBP3 involved in the binding of the host-plant volatiles. These findings will further promote to understand the key role of odorant binding protein during host perception and oviposition of M. vitrata moths, which improve the efficiency of semiochemical-based prevention and monitoring for this pest in the legume vegetables field.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 289
Author(s):  
Zhao Liu ◽  
Ting Hu ◽  
Huai-Wang Guo ◽  
Xiao-Fei Liang ◽  
Yue-Qing Cheng

The sensilla on the antennae and maxillary palps are the most important olfactory organs, via which the insect can perceive the semiochemicals to adjust their host seeking and oviposition behaviors. The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is a major agricultural quarantine pest infesting more than 250 different fruits and vegetables. However, the sensilla involved in olfaction have not been well documented even though a variety of control practices based on chemical communication have already been developed. In this study, the ultrastructure of the sensilla, especially the olfactory sensilla on the antennae and maxillary palps of both males and females, were investigated with field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Three types of olfactory sensillum types including trichodea, basiconica, and coeloconica, and two non-olfactory sensilla including both chaetica and microtrichia, were observed. Each of these three types of olfactory sensilla on the antennae of B. dorsalis were further classified into two subtypes according to the morphology and number of receptor cells. For the first time, the pores on the sensilla trichodea and basiconica cuticular wall were observed in this species, suggesting they are involved in semiochemical perception. This study provides new information on B. dorsalis olfaction, which can be connected to other molecular, genetic, and behavioral research to construct an integral olfactory system model for this species.


Author(s):  
Ana Cristina Bahia ◽  
Ana Beatriz F Barletta ◽  
Luciana Conceição Pinto ◽  
Alessandra S Orfanó ◽  
Rafael Nacif-Pimenta ◽  
...  

Abstract We investigated by scanning electron microscopy the morphology, distribution, and abundance of antennal sensilla of females Phlebotomus duboscqi sand fly, an important vector of zoonotic cutaneous leishmaniasis at Afrotropical region. Thirteen well-differentiated sensilla were identified, among six types of cuticular sensilla. The probable function of these sensillary types is discussed in relation to their external structure and distribution. Five sensillary types were classified as olfactory sensilla, as they have specific morphological characters of sensilla with this function. Number and distribution of sensilla significantly differed between antennal segments. The results of the present work, besides corroborating in the expansion of the morphological and ultrastructural knowledge of P. duboscqi, can foment future electrophysiological studies for the development of volatile semiochemicals, to be used as attractants in traps for monitoring and selective vector control of this sand fly.


Sign in / Sign up

Export Citation Format

Share Document