scholarly journals Atomic Emission Method for Total Boron in Blood during Neutron-Capture Therapy

2001 ◽  
Vol 47 (10) ◽  
pp. 1796-1803 ◽  
Author(s):  
Juha Laakso ◽  
Martti Kulvik ◽  
Inkeri Ruokonen ◽  
Jyrki Vähätalo ◽  
Riitta Zilliacus ◽  
...  

Abstract Background: Boron neutron-capture therapy (BNCT) is a drug-targeted binary radiotherapy for cancer. The 10B capture of thermal neutrons induces secondary radiation within cells during irradiation. The most widely used boron carrier is 4-dihydroxyborylphenylalanine (BPA). The duration and timing of the irradiation is adjusted by monitoring 10B concentrations in whole blood. Methods: We developed a new method for boron determination that uses inductively coupled plasma atomic emission spectrometry (ICP-AES) and protein removal with trichloroacetic acid before analysis. This method was compared with the established but tedious inductively coupled plasma mass spectrometry (ICP-MS), which uses wet ashing as sample pretreatment. Erythrocyte boron concentrations were determined indirectly on the basis of plasma and whole blood boron concentrations and the hematocrit. The hematocrit was determined indirectly by measuring calcium concentrations in plasma and whole blood. Results: Within- and between-day CVs were <5%. The recoveries for boron in whole blood were 95.6–96.2%. A strong correlation was found between results of the ICP-AES and ICP-MS (r = 0.994). Marked differences in plasma and erythrocyte boron concentrations were observed during and after infusion of BPA fructose complex. Conclusions: The present method is feasible, accurate, and one of the fastest for boron determination during BNCT. Our results indicate that it is preferable to determine boron in plasma and in whole blood. Indirect erythrocyte-boron determination thus becomes possible and avoids the impact of preanalytical confounding factors, such as the influence of the hematocrit of the patient. Such an approach enables a more reliable estimation of the irradiation dose.

Agrociencia ◽  
2020 ◽  
Vol 54 (3) ◽  
pp. 413-434
Author(s):  
Juliana Padilla-Cuevas ◽  
Hernani T. Yee-Madeira ◽  
Agustín Merino-García ◽  
Claudia Hidalgo ◽  
Jorge D. Etchevers

Las técnicas para analizar los elementos esenciales o tóxicos para las plantas y los seres humanos, ha experimentado un acelerado desarrollo en los últimos tiempos, tanto en las convencionales o clásicas, que requieren la solubilización de la muestra, como en otras emergentes que no la requieren. Las técnicas convencionales avanzadas y las no destructivas se usan poco por los investigadores en genética, agronomía, nutrición, fisiología, biología, para evaluar la composición y calidad nutrimental de alimentos, cuantificar elementos metálicos esenciales y tóxicos, diagnosticar el estado nutrimental de los cultivos y estudiar alimentos funcionales. Estas técnicas analíticas se pueden aplicar, además, a suelos, abonos y fertilizantes. El objetivo de este ensayo es difundir las posibilidades de aplicación y los principios básicos de estas técnicas analíticas emergentes. La espectrometría de emisión por atomización con plasma inductivamente acoplado (ICP, Inductively coupled plasma) y la de ICP masas (ICP-MS, Mass spectrometry with inductive coupling plasma) tienen mayor interés que las técnicas clásicas usadas en los laboratorios de los países de escaso desarrollo, como las espectrometrías de emisión (AES, Atomic emission spectrometry) y absorción atómica (AAS, Atomic absorption spectrometry), que requieren solubilización de la matriz. La ICP-MS y la ICP tienen ventajas para el análisis simultáneo de contenidos totales de la mayoría de los elementos esenciales para el crecimiento de los vegetales. Entre las técnicas no destructivas de la matriz, la mayoría de las consideradas en este ensayo se basan en la interacción de los rayos X con la materia, como fotoemisión de rayos X (XPS, X-ray photoelectron spectrometry), emisión de rayos X inducida por partículas (PIXE, Particle induced X-ray emission), fluorescencia de rayos X (XRF, X-ray fluorescence) y espectrometría de dispersión de energía de rayos X (EDS, Energy-dispersive X-ray spectroscopy), similares en sus fundamentos. Estas técnicas, a diferencias de las anteriores, no requieren solubilizar la muestra o su preparación es mínima. Otras ventajas son su rapidez, la realización de análisis multielemental simultáneo, tamaño pequeño de muestra, adquisición de la distribución de elementos químicos en la muestra y generar mapas en dos dimensiones. Las cuatro técnicas descritas más arriba analizan contenidos totales. PIXE y XRF presentan mayor sensibilidad que las otras dos para cuantificar elementos traza en concentraciones de partes por millón, y estas dos más EDS se pueden acoplar a microscopios ad hoc para obtener la distribución de elementos químicos y hacer mapeos. La técnica XPS permite analizar fracciones iónicas en estudios de estados de oxidación de los elementos, pero las concentraciones en las muestras deben ser superiores a 0.1% en peso. Las aplicaciones de las técnicas no destructivas generan información complementaria a las clásicas y aportan conocimiento básico. Otras ventajas es que la preparación de las muestras requiere menos tiempo, excepto cuando se requieren mapeos. Su capacidad para ejecutar multianálisis permite reducir costos. En México y otros países hay grupos de investigación especializados en estas técnicas, pero es necesario desarrollar e implementar aplicaciones para realizar análisis de matrices biológicas como vegetales (semillas, hojas, etc.), alimentos, abonos y matriz orgánica de los suelos. Un conocimiento más profundo de estas técnicas permitirá la interacción de grupos de investigación y generar información para estudios de ciencia básica en agronomía y alimentos.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Stanko Ilić Popov ◽  
Trajče Stafilov ◽  
Robert Šajn ◽  
Claudiu Tănăselia ◽  
Katerina Bačeva

A systematic study was carried out to investigate the distribution of fifty-six elements in the water samples from river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 27 sampling sites. Analyses were performed by mass spectrometry with inductively coupled plasma (ICP-MS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). Cluster and R mode factor analysis (FA) was used to identify and characterise element associations and four associations of elements were determined by the method of multivariate statistics. Three factors represent the associations of elements that occur in the river water naturally while Factor 3 represents an anthropogenic association of the elements (Cd, Ga, In, Pb, Re, Tl, Cu, and Zn) introduced in the river waters from the waste waters from the mining and metallurgical activities in the country.


2003 ◽  
Vol 1 (3) ◽  
Author(s):  
B. Zlateva ◽  
R. Djingova ◽  
I. Kuleff

AbstractThe possibility of using inductively coupled plasma atomic emission spectrometry (ICP-AES) to determine the elemental composition of archaeological bones elements was evaluated and discussed. The interferences of the major elements (Ca, P, K, Na, Al and Fe) on the microelements (Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, Zn) were investigated and the appropriate analytical lines were selected. The role of different nebulizers (cross-flow, Babington and Meinhard) on detection limits were investigated. The applicability of the proposed procedure was demonstrated analyzing IAEA-SRM-H-5 (Animal bone); and authentic bone sample dating back to the 4th century BC. These results were compared to ETAAS and ICP-MS.


Sign in / Sign up

Export Citation Format

Share Document