scholarly journals Survival of Female Lesser Scaup: Effects of Body Size, Age, and Reproductive Effort

The Condor ◽  
2003 ◽  
Vol 105 (2) ◽  
pp. 336-347 ◽  
Author(s):  
Jay J. Rotella ◽  
Robert G. Clark ◽  
Alan D. Afton

AbstractIn birds, larger females generally have greater breeding propensity, reproductive investment, and success than do smaller females. However, optimal female body size also depends on how natural selection acts during other parts of the life cycle. Larger female Lesser Scaup (Aythya affinis) produce larger eggs than do smaller females, and ducklings from larger eggs survive better than those hatching from smaller eggs. Accordingly, we examined patterns of apparent annual survival for female scaup and tested whether natural selection on female body size primarily was stabilizing, a frequent assumption in studies of sexually dimorphic species in which males are the larger sex, or was directional, counteracting reproductive advantages of large size. We estimated survival using mark-recapture methods for individually marked females from two study sites in Canada (Erickson, Manitoba; St. Denis, Saskatchewan). Structurally larger (adults) and heavier (ducklings) females had lower survival than did smaller individuals in Manitoba; no relationship was detected in adults from Saskatchewan. Survival of adult females declined with indices of increasing reproductive effort at both sites; consequently, the cost of reproduction could explain age-related patterns of breeding propensity in scaup. Furthermore, if larger females are more likely to breed than are smaller females, then cost of reproduction also may help explain why survival was lower for larger females. Overall, we found that advantages of large body size of female scaup during breeding or as young ducklings apparently were counteracted by natural selection favoring lightweight juveniles and structurally smaller adult females through higher annual survival.Sobrevivencia de Aythya affinis: Efectos del Tamaño Corporal, Edad y Esfuerzo ReproductivoResumen. En las aves, las hembras de mayor tamaño generalmente presentan una mayor predisposición a la reproducción, mayor inversión reproductiva y mayor éxito que las hembras de menor tamaño. Sin embargo, el tamaño óptimo de la hembra también depende de cómo la selección natural opera durante otras etapas del ciclo de vida. Hembras de Aythya affinis más grandes producen huevos de mayor tamaño que hembras más pequeñas, y los polluelos provenientes de huevos más grandes sobreviven mejor que aquellos que eclosionan de huevos más pequeños. Consiguientemente, examinamos los patrones de sobrevivencia anual aparente para hembras de A. affinis y probamos si la selección natural sobre el tamaño del cuerpo de las hembras era principalmente estabilizadora (una suposición frecuente en estudios de especies sexualmente dimórficas en que los machos son el sexo mayor), o era direccional, contrarrestando las ventajas reproductivas de un tamaño mayor. Estimamos la sobrevivencia de hembras utilizando métodos de marcaje y recaptura en dos sitios de estudio (Erickson, Manitoba; St. Denis, Saskatchewan). Hembras estructuralmente más grandes (adultas) y más pesadas (polluelos) tuvieron una menor sobrevivencia que individuos más pequeños en Manitoba; no se detectó una relación entre adultos de Saskatchewan. En ambos sitios la sobrevivencia de hembras adultas decreció con los índices de incremento de esfuerzo reproductivo; consecuentemente el costo reproductivo podría explicar los patrones de predisposición reproductiva relacionados a la edad en A. affinis. Además, si las hembras de mayor tamaño presentan mayor probabilidad de reproducirse que las hembras pequeñas, entonces el costo reproductivo también podría ayudar a explicar porqué la sobrevivencia fue menor para hembras más grandes. En general encontramos que en las hembras de A. affinis las ventajas de un tamaño corporal grande durante la cría o como juveniles fueron aparentemente contrarestadas por la selección natural que favorece juveniles de peso liviano y hembras adultas estructuralmente más pequeñas a través de una mayor sobrevivencia anual.

The Auk ◽  
2004 ◽  
Vol 121 (3) ◽  
pp. 917-929 ◽  
Author(s):  
Michael J. Anteau ◽  
Alan D. Afton

AbstractThe continental scaup population (Lesser [Aythya affinis] and Greater [A. marila] combined) has declined markedly since 1978. One hypothesis for the population decline states that reproductive success has decreased because female scaup are arriving on breeding areas in poorer body condition than they did historically (i.e. spring condition hypothesis). We tested one aspect of that hypothesis by comparing body mass and nutrient reserves (lipid, protein, and mineral) of Lesser Scaup at four locations (Louisiana, Illinois, Minnesota, and Manitoba) between the 1980s and 2000s. We found that mean body mass and lipid and mineral reserves of females were 80.0, 52.5, and 3.0 g higher, respectively, in the 2000s than in the 1980s in Louisiana; similarly, body mass and lipid and mineral reserves of males were 108.8, 72.5, and 2.5 g higher, respectively. In Illinois, mean body mass and lipid reserves of females were 88.6 and 56.5 g higher, respectively, in the 2000s than in the 1980s; similarly, body mass and lipid and mineral reserves of males were 80.6, 76.0, and 2.7 g higher, respectively. Mean body mass of females were 58.5 and 58.9 g lower in the 2000s than in the 1980s in Minnesota and Manitoba, respectively; mean body mass of males, similarly, were 40.7 g lower in Minnesota. Mean lipid reserves of females in the 2000s were 28.8 and 27.8 g lower than those in the 1980s in Minnesota and Manitoba, respectively. Mean mineral reserves of females in the 2000s were 3.2 g lower than those in the 1980s in Manitoba. Consequently, females arriving to breed in Manitoba in the 2000s had accumulated lipid reserves for 4.1 fewer eggs and mineral reserves for 0.8 fewer eggs than those arriving to breed there in the 1980s. Accordingly, our results are consistent with the spring condition hypothesis and suggest that female body condition has declined, as reflected by decreases in body mass, lipids, and mineral reserves that could cause reductions in reproductive success and ultimately a population decline.


Sex Roles ◽  
2008 ◽  
Vol 60 (1-2) ◽  
pp. 128-141 ◽  
Author(s):  
Claudia A. Barriga ◽  
Michael A. Shapiro ◽  
Rayna Jhaveri

2018 ◽  
Vol 39 (5) ◽  
pp. 538-546 ◽  
Author(s):  
Tracey Thornborrow ◽  
Jean-Luc Jucker ◽  
Lynda G. Boothroyd ◽  
Martin J. Tovée

Behaviour ◽  
2018 ◽  
Vol 155 (10-12) ◽  
pp. 905-914 ◽  
Author(s):  
Fahmida W. Tina ◽  
M. Jaroensutasinee ◽  
K. Jaroensutasinee

Abstract We tested for the first time how Austruca bengali Crane, 1975 signaller males adjusted their waving rates based on receiver female body sizes and their distances. We video recorded the waving display of 46 males (9–12 mm carapace width) for 30 s, and counted their waving rate. Receiver females were categorised as small (8–10 mm carapace width) and large (>10 mm). Distances between males and females were categorised as short (⩽12 cm) and long (>12 cm) distances. Our results indicate that males are able to measure distances and female sizes, and adjust their waving display by actively reducing waving rate (1) towards small females, as usually small females have lower fecundity compared to large ones and (2) towards females at very close distance because at this point, the females would make their mating decision, and thus males start to lead/hit the females towards their burrow rather than waving vigorously.


Sign in / Sign up

Export Citation Format

Share Document