Receiver female body size and distances affect the claw-waving rate of signaller males in fiddler crabs (Brachyura, Ocypodidae)

Behaviour ◽  
2018 ◽  
Vol 155 (10-12) ◽  
pp. 905-914 ◽  
Author(s):  
Fahmida W. Tina ◽  
M. Jaroensutasinee ◽  
K. Jaroensutasinee

Abstract We tested for the first time how Austruca bengali Crane, 1975 signaller males adjusted their waving rates based on receiver female body sizes and their distances. We video recorded the waving display of 46 males (9–12 mm carapace width) for 30 s, and counted their waving rate. Receiver females were categorised as small (8–10 mm carapace width) and large (>10 mm). Distances between males and females were categorised as short (⩽12 cm) and long (>12 cm) distances. Our results indicate that males are able to measure distances and female sizes, and adjust their waving display by actively reducing waving rate (1) towards small females, as usually small females have lower fecundity compared to large ones and (2) towards females at very close distance because at this point, the females would make their mating decision, and thus males start to lead/hit the females towards their burrow rather than waving vigorously.

2020 ◽  
Vol 70 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Fahmida Wazed Tina

Abstract The alteration of signals of animals in response to changes in environmental factors is a common phenomenon. In male fiddler crabs, waving major claws towards females is energetically costly; thus, males need to adjust their waving in a way that increases the chance of potential mate attraction while reducing the waving cost. In this study, I examined how Austruca perplexa males adjusted their waving rate based on male-male competition (male numbers in a cluster [Austruca perplexa males make groups and wave synchronously towards females]), female body size, and the distances of the receiver females from the signaller males. Forty clusters were selected randomly; from each cluster, I randomly selected one male, video recorded his waving behaviour and calculated waving rate (waves/min). Body size (carapace width) and distances of receiver females were measured. To analyze the effects of competition, female size, and their distances on male waving rate through binary logistic regression analysis, all variables were divided into two categories (male waving rate: low and high, competition: low and high, female size: small and large, and female distances: short and long) based on a median split method. Afterwards a series of binary logistic regression models were built and the relative supports of various models were assessed based on the corrected Akaike information criterion. Results showed that competition, female body size and their distances affected the male waving rate in an additive manner, but their interactions did not show any effect. Further research can be conducted to investigate how breeding season and predation risk along with competition, female size and female distances affect the claw-waving display of male fiddler crabs.


2006 ◽  
Vol 27 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Lígia Pizzatto ◽  
Otavio Marques

AbstractSexual maturity, sexual dimorphism, reproductive output, and parasitism of the colubrid snake Liophis miliaris were compared among populations inhabiting four regions of Brazil: (1) northern coastal Atlantic forest, (2) southern coastal Atlantic forest, (3) northern inland Atlantic forest (4) southern inland Atlantic forest. Females delayed maturity and attained larger body sizes than males in all regions. Males and females from northern Atlantic forest were smaller and attained maturity with a smaller body size than males of other regions. The sexual size dimorphism index ranged from 0.19 to 0.23 and was lowest in the northern Atlantic forest. There was no sexual dimorphism in head length in any of the populations studied. Clutch size was similar in all populations and increased with maternal body size. The reproductive frequency was lower in the northern coastal Atlantic forest and in contrast to the other regions, tended to increase with female body size. The nematoda Ophidiascaris sp. and cystacanths of Oligacanthorynchus spira (Acanthocephala) occurred equally in both sexes. Fewer snakes from the northern coastal Atlantic forest were infested by parasites compared to the other regions and parasitism apparently did not influence reproduction.


Crustaceana ◽  
2016 ◽  
Vol 89 (6-7) ◽  
pp. 759-773 ◽  
Author(s):  
Fahmida Wazed Tina ◽  
Mullica Jaroensutasinee ◽  
Krisanadej Jaroensutasinee

We investigated the amount of time that large and small, male and female fiddler crabsUca annulipes(H. Milne Edwards, 1837) spent on feeding, walking, standing, grooming, burrowing, inside burrows, fighting, and courtship waving. We video-recorded the activities of 45 males (22 small and 23 large), and 39 females (19 small and 20 large) each for 5 min, and calculated the percentage of time spent on each activity/crab. Our results showed that both sexes spent more time on feeding than on other activities. Males spent more time on building burrows, walking, and grooming than females, and females spent more time inside burrows than males. Smaller males spent more time on feeding, and less time on building burrows and on waving than larger ones. There were no relations between female body size and activities. Feeding rate/feeding claw was higher in males than in females, and crab body size was negatively associated with feeding rate/min.


2020 ◽  
Vol 287 (1918) ◽  
pp. 20192615 ◽  
Author(s):  
Michael D. Burns ◽  
Devin D. Bloom

Migratory animals respond to environmental heterogeneity by predictably moving long distances in their lifetime. Migration has evolved repeatedly in animals, and many adaptations are found across the tree of life that increase migration efficiency. Life-history theory predicts that migratory species should evolve a larger body size than non-migratory species, and some empirical studies have shown this pattern. A recent study analysed the evolution of body size between diadromous and non-diadromous shads, herrings, anchovies and allies, finding that species evolved larger body sizes when adapting to a diadromous lifestyle. It remains unknown whether different fish clades adapt to migration similarly. We used an adaptive landscape framework to explore body size evolution for over 4500 migratory and non-migratory species of ray-finned fishes. By fitting models of macroevolution, we show that migratory species are evolving towards a body size that is larger than non-migratory species. Furthermore, we find that migratory lineages evolve towards their optimal body size more rapidly than non-migratory lineages, indicating body size is a key adaption for migratory fishes. Our results show, for the first time, that the largest vertebrate radiation on the planet exhibited strong evolutionary determinism when adapting to a migratory lifestyle.


The Condor ◽  
2003 ◽  
Vol 105 (2) ◽  
pp. 336-347 ◽  
Author(s):  
Jay J. Rotella ◽  
Robert G. Clark ◽  
Alan D. Afton

AbstractIn birds, larger females generally have greater breeding propensity, reproductive investment, and success than do smaller females. However, optimal female body size also depends on how natural selection acts during other parts of the life cycle. Larger female Lesser Scaup (Aythya affinis) produce larger eggs than do smaller females, and ducklings from larger eggs survive better than those hatching from smaller eggs. Accordingly, we examined patterns of apparent annual survival for female scaup and tested whether natural selection on female body size primarily was stabilizing, a frequent assumption in studies of sexually dimorphic species in which males are the larger sex, or was directional, counteracting reproductive advantages of large size. We estimated survival using mark-recapture methods for individually marked females from two study sites in Canada (Erickson, Manitoba; St. Denis, Saskatchewan). Structurally larger (adults) and heavier (ducklings) females had lower survival than did smaller individuals in Manitoba; no relationship was detected in adults from Saskatchewan. Survival of adult females declined with indices of increasing reproductive effort at both sites; consequently, the cost of reproduction could explain age-related patterns of breeding propensity in scaup. Furthermore, if larger females are more likely to breed than are smaller females, then cost of reproduction also may help explain why survival was lower for larger females. Overall, we found that advantages of large body size of female scaup during breeding or as young ducklings apparently were counteracted by natural selection favoring lightweight juveniles and structurally smaller adult females through higher annual survival.Sobrevivencia de Aythya affinis: Efectos del Tamaño Corporal, Edad y Esfuerzo ReproductivoResumen. En las aves, las hembras de mayor tamaño generalmente presentan una mayor predisposición a la reproducción, mayor inversión reproductiva y mayor éxito que las hembras de menor tamaño. Sin embargo, el tamaño óptimo de la hembra también depende de cómo la selección natural opera durante otras etapas del ciclo de vida. Hembras de Aythya affinis más grandes producen huevos de mayor tamaño que hembras más pequeñas, y los polluelos provenientes de huevos más grandes sobreviven mejor que aquellos que eclosionan de huevos más pequeños. Consiguientemente, examinamos los patrones de sobrevivencia anual aparente para hembras de A. affinis y probamos si la selección natural sobre el tamaño del cuerpo de las hembras era principalmente estabilizadora (una suposición frecuente en estudios de especies sexualmente dimórficas en que los machos son el sexo mayor), o era direccional, contrarrestando las ventajas reproductivas de un tamaño mayor. Estimamos la sobrevivencia de hembras utilizando métodos de marcaje y recaptura en dos sitios de estudio (Erickson, Manitoba; St. Denis, Saskatchewan). Hembras estructuralmente más grandes (adultas) y más pesadas (polluelos) tuvieron una menor sobrevivencia que individuos más pequeños en Manitoba; no se detectó una relación entre adultos de Saskatchewan. En ambos sitios la sobrevivencia de hembras adultas decreció con los índices de incremento de esfuerzo reproductivo; consecuentemente el costo reproductivo podría explicar los patrones de predisposición reproductiva relacionados a la edad en A. affinis. Además, si las hembras de mayor tamaño presentan mayor probabilidad de reproducirse que las hembras pequeñas, entonces el costo reproductivo también podría ayudar a explicar porqué la sobrevivencia fue menor para hembras más grandes. En general encontramos que en las hembras de A. affinis las ventajas de un tamaño corporal grande durante la cría o como juveniles fueron aparentemente contrarestadas por la selección natural que favorece juveniles de peso liviano y hembras adultas estructuralmente más pequeñas a través de una mayor sobrevivencia anual.


Sex Roles ◽  
2008 ◽  
Vol 60 (1-2) ◽  
pp. 128-141 ◽  
Author(s):  
Claudia A. Barriga ◽  
Michael A. Shapiro ◽  
Rayna Jhaveri

2018 ◽  
Vol 39 (5) ◽  
pp. 538-546 ◽  
Author(s):  
Tracey Thornborrow ◽  
Jean-Luc Jucker ◽  
Lynda G. Boothroyd ◽  
Martin J. Tovée

Sign in / Sign up

Export Citation Format

Share Document