scholarly journals Habitat Selection in a Changing Environment: The Relationship Between Habitat Alteration and Spotted Owl Territory Occupancy and Breeding Dispersal

The Condor ◽  
2007 ◽  
Vol 109 (3) ◽  
pp. 566-576 ◽  
Author(s):  
Mark E. Seamans ◽  
R.J. Gutiérrez

Abstract Abstract. Understanding the effect of habitat alteration on avian behavior is important for understanding a species' ecology and ensuring its conservation. Therefore, we examined the relationship between Spotted Owl habitat selection and variation in habitat in the Sierra Nevada. We estimated habitat selection by modeling the probability of territory colonization (γ), territory extinction (ε), and breeding dispersal in relation to the amount of mature conifer forest within and among territories. Alteration of ≥20 ha of mature conifer forest (coniferous forest with >70% canopy cover dominated by medium [30.4–60.9 cm dbh] and large [>60.9 cm dbh] trees) within individual territories (n  =  66) was negatively related to territory colonization and positively related to breeding dispersal probability. Although territory extinction was negatively related to the amount of mature conifer forest, it was not clear whether this relationship was due to variation of mature conifer forest within or among territories. Although modeling results for territory colonization and extinction generally supported the hypothesis that individuals are “ideal” when selecting a habitat in the sense that they settle in the highest-quality site available, we did not find a clear benefit in terms of habitat quality for Spotted Owls that exhibited breeding dispersal.

2019 ◽  
Vol 28 (7) ◽  
pp. 495 ◽  
Author(s):  
Jamie M. Lydersen ◽  
Brandon M. Collins ◽  
Carolyn T. Hunsaker

Forest restoration treatments seek to increase resilience to wildfire and a changing climate while avoiding negative impacts to the ecosystem. The extent and intensity of treatments are often constrained by operational considerations and concerns over uncertainty in the trade-offs of addressing different management goals. The recent (2012–15) extreme drought in California, USA, resulted in widespread tree mortality, particularly in the southern Sierra Nevada, and provided an opportunity to assess the effects of restoration treatments on forest resilience to drought. We assessed changes in mixed-conifer forest structure following thinning and understorey burning at the Kings River Experimental Watersheds in the southern Sierra Nevada, and how treatments, topography and forest structure related to tree mortality in the recent drought. Treatments had negligible effect on basal area, tree density and canopy cover. Following the recent drought, average basal area mortality within the watersheds ranged from 5 to 26% across riparian areas and 12 to 44% across upland areas, with a range of 0 to 95% across all plots. Tree mortality was not significantly influenced by restoration treatments or topography. Our results suggest that the constraints common to many restoration treatments may limit their ability to mitigate the impacts of severe drought.


1997 ◽  
Vol 61 (4) ◽  
pp. 1281 ◽  
Author(s):  
Christine A. Moen ◽  
R. J. Gutierrez

2016 ◽  
Vol 283 (1842) ◽  
pp. 20162106 ◽  
Author(s):  
Melissa J. Merrick ◽  
John L. Koprowski

Natal habitat preference induction (NHPI) is a mechanism for habitat selection by individuals during natal dispersal. NHPI occurs in wild animal populations, and evidence suggests it may be a common, although little studied, mechanism for post-dispersal habitat selection. Most tests of NHPI examine the influence of distinct, contrasting natal habitat types on post-dispersal habitat selection. We test the hypothesis that NHPI can occur within a single habitat type, an important consideration for habitat specialists. The Mount Graham red squirrel ( Tamiasciurus hudsonicus grahamensis ) is an endangered forest obligate restricted to a single mountain primarily within mixed-conifer forest. We test for NHPI by comparing intra-individual differences in natal and settlement habitat structure and composition to expected random pairwise differences. Dispersing juveniles appear to select settlement locations that are more similar to natal areas than expected in several forest structure and composition variables that include canopy cover and live basal area. Our results provide support for NHPI as a mechanism for post-dispersal habitat selection in habitat specialists that occupy a single vegetation community type.


1983 ◽  
Vol 19 (1) ◽  
pp. 117-129 ◽  
Author(s):  
Kenneth Cole

AbstractSeven packrat midden samples make possible a comparison between the modern and late Pleistocene vegetation in Kings Canyon on the western side of the southern Sierra Nevada. One modern sample contains macrofossils and pollen derived from the present-day oak-chaparral vegetation. Macrofossils from the six late Pleistocene samples record a mixed coniferous forest dominated by the xerophytic conifers Juniperus occidentalis, Pinus cf. ponderosa, and P. monophylla. The pollen spectra of these Pleistocene middens are dominated by Pinus sp., Taxodiaceae-Cupressaceae-Taxaceae (TCT), and Artemisia sp. Mesophytic conifers are represented by low macrofossil concentrations. Sequoiadendron giganteum is represented by a few pollen grains in the full glacial. Edaphic control and snow dispersal are the most likely causes of these mixed assemblages.The dominant macrofossils record a more xeric plant community than those that now occur on similar substrates at higher elevations or latitudes in the Sierra Nevada. These assemblages suggest that late Wisconsin climates were cold with mean annual precipitation not necessarily greater than modern values. This conclusion supports a model of low summer ablation allowing for the persistence of the glaciers at higher elevations during the late Wisconsin. The records in these middens also suggest that S. giganteum grew at lower elevations along the western side of the range and that P. monophylla was more widely distributed in cismontane California during the Pleistocene.


2021 ◽  
Vol 13 (5) ◽  
pp. 2640
Author(s):  
Muhammad Zubair ◽  
Akash Jamil ◽  
Syed Bilal Hussain ◽  
Ahsan Ul Haq ◽  
Ahmad Hussain ◽  
...  

The moist temperate forests in Northern Pakistan are home to a variety of flora and fauna that are pivotal in sustaining the livelihoods of the local communities. In these forests, distribution and richness of vegetation, especially that of medicinal plants, is rarely reported. In this study, we carried out a vegetation survey in District Balakot, located in Northeastern Pakistan, to characterize the diversity of medicinal plants under different canopies of coniferous forest. The experimental site was divided into three major categories (viz., closed canopy, open spaces, and partial tree cover). A sampling plot of 100 m2 was established on each site to measure species diversity, dominance, and evenness. To observe richness and abundance, the rarefaction and rank abundance curves were plotted. Results revealed that a total of 45 species representing 34 families were available in the study site. Medicinal plants were the most abundant (45%) followed by edible plants (26%). Tree canopy cover affected the overall growth of medicinal plants on the basis of abundance and richness. The site with partial canopy exhibited the highest diversity, dominance, and abundance compared to open spaces and closed canopy. These findings are instrumental in identifying the wealth of the medicinal floral diversity in the northeastern temperate forest of Balakot and the opportunity to sustain the livelihoods of local communities with the help of public/private partnership.


Ecosystems ◽  
2021 ◽  
Author(s):  
Robert O’Dwyer ◽  
Laurent Marquer ◽  
Anna-Kari Trondman ◽  
Anna Maria Jönsson

AbstractClimate change and human activities influence the development of ecosystems, with human demand of ecosystem services altering both land use and land cover. Fossil pollen records provide time series of vegetation characteristics, and the aim of this study was to create spatially continuous reconstructions of land cover through the Holocene in southern Sweden. The Landscape Reconstruction Algorithm (LRA) was applied to obtain quantitative reconstructions of pollen-based vegetation cover at local scales, accounting for pollen production, dispersal, and deposition mechanisms. Pollen-based local vegetation estimates were produced from 41 fossil pollen records available for the region. A comparison of 17 interpolation methods was made and evaluated by comparing with current land cover. Simple kriging with cokriging using elevation was selected to interpolate the local characteristics of past land cover, to generate more detailed reconstructions of trends and degree of variability in time and space than previous studies based on pollen data representing the regional scale. Since the Mesolithic, two main processes have acted to reshape the land cover of southern Sweden, originally mostly covered by broad-leaved forests. The natural distribution limit of coniferous forest has moved southward during periods with colder climate and retracted northward during warmer periods, and human expansion in the area and agrotechnological developments has led to a gradually more open landscape, reaching maximum openness at the beginning of the 20th century. The recent intensification of agriculture has led to abandonment of less fertile agricultural fields and afforestation with conifer forest.


1980 ◽  
Vol 112 (7) ◽  
pp. 725-730 ◽  
Author(s):  
D. J. Goheen ◽  
F. W. Cobb

AbstractThe relationship between bark beetle infestation of ponderosa pine and severity of infection by Ceratocystis wageneri was investigated by closely monitoring 256 trees (136 apparently healthy, 60 moderately diseased, and 60 severely diseased at initiation of study) for beetle infestation from summer 1972 to fall 1975. Disease ratings were updated by periodic examination, and some trees changed disease category during the study. Ninety trees were infested by Dendroctonus brevicomis, D. ponderosae, or both, five by buprestids alone, and one tree died from effects of the pathogen alone. Sixty-two of the beetle-infested trees were severely diseased at time of infestation, 25 were moderately diseased, and only three were apparently healthy. Thus, the results showed that bark beetles were much more likely to infest infected than healthy trees. Among diseased trees, those with advanced infections were most likely to be infested. There was evidence that buprestids (especially Melanophila spp.) and possibly Ips spp. attacked diseased trees prior to Dendroctonus spp. infestation.


Sign in / Sign up

Export Citation Format

Share Document