scholarly journals Biopanning data bank 2018: hugging next generation phage display

Database ◽  
2018 ◽  
Vol 2018 ◽  
Author(s):  
Bifang He ◽  
Lixu Jiang ◽  
Yaocong Duan ◽  
Guoshi Chai ◽  
Yewei Fang ◽  
...  

Abstract The 2018 update of the biopanning data bank (BDB) stores phage display data sequenced by Sanger sequencing and next generation sequencing technologies. In this work, we upgraded the database with more biopanning data sets and several new features, including (i) incorporation of next generation biopanning data and the unselected population where the target is not determined and the round of screening is zero; (ii) addition of sequencing information; (iii) improvement of browsing and searching systems and 3 D chemical structure viewer; (iv) integration of standalone tools for target-unrelated peptides analysis within conventional phage display and next generation phage display (NGPD) data. In the current version of BDB (released on 19 January 2018), the database houses 3291 sets of biopanning data collected from 1540 published articles, including 95 NGPD data sets and 3196 traditional biopanning data sets. The BDB database serves as an important and comprehensive resource for developing peptide ligands. Database URL: The BDB database is available at http://immunet.cn/bdb

2020 ◽  
Vol 26 (42) ◽  
pp. 7672-7693 ◽  
Author(s):  
Bifang He ◽  
Anthony Mackitz Dzisoo ◽  
Ratmir Derda ◽  
Jian Huang

Background: Phage display is a powerful and versatile technology for the identification of peptide ligands binding to multiple targets, which has been successfully employed in various fields, such as diagnostics and therapeutics, drug-delivery and material science. The integration of next generation sequencing technology with phage display makes this methodology more productive. With the widespread use of this technique and the fast accumulation of phage display data, databases for these data and computational methods have become an indispensable part in this community. This review aims to summarize and discuss recent progress in the development and application of computational methods in the field of phage display. Methods: We undertook a comprehensive search of bioinformatics resources and computational methods for phage display data via Google Scholar and PubMed. The methods and tools were further divided into different categories according to their uses. Results: We described seven special or relevant databases for phage display data, which provided an evidence-based source for phage display researchers to clean their biopanning results. These databases can identify and report possible target-unrelated peptides (TUPs), thereby excluding false-positive data from peptides obtained from phage display screening experiments. More than 20 computational methods for analyzing biopanning data were also reviewed. These methods were classified into computational methods for reporting TUPs, for predicting epitopes and for analyzing next generation phage display data. Conclusion: The current bioinformatics archives, methods and tools reviewed here have benefitted the biopanning community. To develop better or new computational tools, some promising directions are also discussed.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1751
Author(s):  
Lau K. Vestergaard ◽  
Douglas N. P. Oliveira ◽  
Claus K. Høgdall ◽  
Estrid V. Høgdall

Data analysis has become a crucial aspect in clinical oncology to interpret output from next-generation sequencing-based testing. NGS being able to resolve billions of sequencing reactions in a few days has consequently increased the demand for tools to handle and analyze such large data sets. Many tools have been developed since the advent of NGS, featuring their own peculiarities. Increased awareness when interpreting alterations in the genome is therefore of utmost importance, as the same data using different tools can provide diverse outcomes. Hence, it is crucial to evaluate and validate bioinformatic pipelines in clinical settings. Moreover, personalized medicine implies treatment targeting efficacy of biological drugs for specific genomic alterations. Here, we focused on different sequencing technologies, features underlying the genome complexity, and bioinformatic tools that can impact the final annotation. Additionally, we discuss the clinical demand and design for implementing NGS.


2008 ◽  
Vol 18 (10) ◽  
pp. 1638-1642 ◽  
Author(s):  
D. R. Smith ◽  
A. R. Quinlan ◽  
H. E. Peckham ◽  
K. Makowsky ◽  
W. Tao ◽  
...  

2011 ◽  
Vol 16 (11-12) ◽  
pp. 512-519 ◽  
Author(s):  
Peter M. Woollard ◽  
Nalini A.L. Mehta ◽  
Jessica J. Vamathevan ◽  
Stephanie Van Horn ◽  
Bhushan K. Bonde ◽  
...  

Genes ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 429 ◽  
Author(s):  
Daniela Barros-Silva ◽  
C. Marques ◽  
Rui Henrique ◽  
Carmen Jerónimo

DNA methylation is an epigenetic modification that plays a pivotal role in regulating gene expression and, consequently, influences a wide variety of biological processes and diseases. The advances in next-generation sequencing technologies allow for genome-wide profiling of methyl marks both at a single-nucleotide and at a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, coverage, and bioinformatics analysis. Thus, the selection of the most feasible method according with the project’s purpose requires in-depth knowledge of those techniques. Currently, high-throughput sequencing techniques are intensively used in epigenomics profiling, which ultimately aims to find novel biomarkers for detection, diagnosis prognosis, and prediction of response to therapy, as well as to discover new targets for personalized treatments. Here, we present, in brief, a portrayal of next-generation sequencing methodologies’ evolution for profiling DNA methylation, highlighting its potential for translational medicine and presenting significant findings in several diseases.


Sign in / Sign up

Export Citation Format

Share Document