Soil-Management History and Host Preference by Ostrinia nubilalis: Evidence for Plant Mineral Balance Mediating Insect–Plant Interactions

1996 ◽  
Vol 25 (6) ◽  
pp. 1329-1336 ◽  
Author(s):  
P. L. Phelan ◽  
K. H. Norris ◽  
J. F. Mason
1995 ◽  
Vol 75 (4) ◽  
pp. 439-447 ◽  
Author(s):  
R. H. McKenzie ◽  
J. F. Dormaar ◽  
G. B. Schaalje ◽  
J. W. B. Stewart

Short-term root processes can influence chemical and biochemical conditions at the soil–plant–root interface. In this study, soil phosphorus forms, pH and biochemical properties within and adjacent to the rhizosphere of hard red spring wheat (Triticum aestivum L. ’Katepwa’) and canola (Brassica napus L. ’Westar’) seedlings were studied over a 5-wk period. Soils were from the Ap horizon of a Calcareous Dark Brown Chernozemic soil (Lethbridge, Alta) and an Orthic Gray Luvisolic soil (Breton, Alta) obtained from fertilized and unfertilized long-term continuous-cropped and wheat–fallow rotation plots. Wheat and canola both absorbed more total phosphorus (P), produced more aboveground material and had higher dehydrogenase and alkaline phosphatase activities when grown in Lethbridge soils than when grown in Breton soils. Canola took up more P from both the resin-extractable inorganic P (resin-Pi) and hydrochloric acid extractable (HCl-Pi) fractions than wheat, indicating a greater ability to extract P from soil. Acid phosphatase levels increased over time in the rhizospheres of both wheat and canola. Dehydrogenase activity was greater in the rhizospheres of wheat than of canola, indicating greater microbial activity. Canola roots frequently lowered pH within their rhizosphere which apparently suppressed microbial activity. Dehydrogenase activity in the relatively acidic Luvisolic soils was lower than in the near-neutral Chernozemic soils. The plant-root chemical and biochemical changes in the rhizosphere varied depending on soil chemical characteristics and past soil management history. Results showed canola and wheat utilize different mechanisms to influence their root rhizospheres and obtain their nutritional requirements. Rhizosphere changes were a function of plant species, soil type and previous soil management history. Key words: Rhizosphere, pH, phosphatase, dehydrogenase, P bioavailability, soil phosphorus transformations, wheat, canola


1998 ◽  
Vol 30 (14) ◽  
pp. 1917-1927 ◽  
Author(s):  
N. Gunapala ◽  
R.C. Venette ◽  
H. Ferris ◽  
K.M. Scow

2006 ◽  
Vol 72 (7) ◽  
pp. 4522-4531 ◽  
Author(s):  
Daniel H. Buckley ◽  
Varisa Huangyutitham ◽  
Tyrrell A. Nelson ◽  
Angelika Rumberger ◽  
Janice E. Thies

ABSTRACT Members of the Planctomycetes, which were once thought to occur primarily in aquatic environments, have been discovered in soils on five continents, revealing that these Bacteria are a widespread and numerically abundant component of microbial communities in soil. We examined the diversity of Planctomycetes in soil samples obtained from experimental plots at an agricultural site in order to assess the extent of Planctomycetes diversity in soil, to determine whether management effects such as past land cover and compost addition affected the composition of the Planctomycetes community, and to determine whether the observations made could provide insight into the ecological distribution of these organisms. Analysis of Planctomycetes 16S rRNA gene sequences revealed a total of 312 ± 35 unique phylotypes in the soil at the site examined. The majority of these Planctomycetes sequences were unique, and the sequences had phylogenetic affiliations that included all major lineages in the Planctomycetaceae, as well as several novel groups of deeply divergent Planctomycetes. Both soil management history and compost amendment had significant effects on the Planctomycetes diversity, and variations in soil organic matter, Ca2+ content, and pH were associated with variations in the Planctomycetes community composition. In addition, Planctomycetes richness increased in proportion to the area sampled and was correlated with the spatial heterogeneity of nitrate, which was associated with the soil management history at the orchard site examined. This report provides the first systematic assessment of the diversity of Planctomycetes in soil and also provides evidence that the diversity of this group increases with area as defined by the general power law description of the taxon-area relationship.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


Sign in / Sign up

Export Citation Format

Share Document