Arthropod Pests and Predators Associated With Bittersweet Nightshade, a Noncrop Host of the Potato Psyllid (Hemiptera: Triozidae)

2016 ◽  
Vol 45 (4) ◽  
pp. 873-882 ◽  
Author(s):  
C. I. Castillo Carrillo ◽  
Z. Fu ◽  
A. S. Jensen ◽  
W. E. Snyder
Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1425-1425 ◽  
Author(s):  
A. F. Murphy ◽  
R. A. Cating ◽  
A. Goyer ◽  
P. B. Hamm ◽  
S. I. Rondon

Potatoes are a major crop in the Columbia Basin of Oregon and Washington, representing an annual farm gate value of almost $750 million. Zebra chip disease (ZC), a new and economically important disease of potato, was first reported in Oregon and Washington in 2011 (1). The disease is caused by the bacterium ‘Candidatus Liberibacter solanacearum’ (Lso, also referred to as ‘Ca. L. psyllaurous’), which is vectored by the potato psyllid (Bactericera cockerelli Sulc) (1,2). Identifying alternative hosts for Lso may facilitate management of ZC disease, which has increased potato production costs in the region. The perennial weed, bittersweet nightshade (Solanum dulcamara L.), is a year-round host of the potato psyllid (3) and is also a suspected host of Lso. However, little is known about the role of this weed in ZC epidemiology. Naturally occurring bittersweet nightshade plants (n = 21) were sampled at six different locations near Hermiston, Oregon, between May and October in 2012. These plants exhibited several symptoms associated with Lso, ranging from asymptomatic to slight purpling, chlorosis, or scorching of the foliage. However, S. dulcamara exhibits similar symptoms under a variety of environmental conditions (drought stress, etc.); therefore, it was difficult to identify potentially infected plants based solely on symptomology. Leaf and stem tissue (n = 21) was analyzed with high-fidelity PCR using species-specific primers for the 16S rDNA gene, CLipoF, and OI2c (2,4). Approximately 27.3% of the plants tested positive for Lso using these primers, including plants from the following locations on 16 April, 16 May, and 24 May, respectively: Hat Rock, OR (45°55.033′ N, 119°10.495′ W), Irrigon, OR (45°54.560′ N, 119°24.857′ W), and Stanfield, OR (45°46.971′ N, 119°13.203′ W). Three plants were selected for further PCR analysis with primers for the outer membrane protein gene, 1482f and 2086r (1). Amplicons obtained with both sets of PCR primers were directly sequenced. A BLAST analysis showed that the 16S rDNA gene sequence (993 to 1,000 bp) shared 99 to 100% identity with several Lso accessions, including JN848751.1 (from Washington) and JN848753.1 (from Oregon). Likewise, the outer membrane protein gene sequence (600 to 601 bp) shared 99 to 100% identity with ‘Ca. L. solanacearum’ accession KC768330.1 (from Honduras). All six sequences were deposited in GenBank (Accession Nos. KJ854199 to KJ854204). According to these findings, bittersweet nightshade may be an important annual source of Lso in the region, particularly since it serves as a host for the potato psyllid. Potato psyllids were also detected at two of the locations with infected S. dulcamara: Irrigon, OR, and Stanfield, OR. A subsample of the psyllids collected in 2012 were analyzed with PCR and Lso was detected in a sample from Stanfield, OR (5). Identifying perennial hosts of Lso promotes a better understanding of both ZC disease epidemiology and management. To our knowledge, this is the first report of Lso causing natural infections in S. dulcamara in the United States. References: (1) J. M. Crosslin et al. Plant Dis. 96:452, 2012. (2) S. Jagoueix et al. Mol. Cell. Probes 10:43, 1996. (3) A. F. Murphy et al. Am. J. Pot. Res. 90:294, 2013. (4) G. A. Secor et al. Plant Dis. 93:574, 2009. (5) K. D. Swisher et al. Am. J. Pot. Res. 90:570, 2013.


2020 ◽  
Vol 113 (5) ◽  
pp. 2079-2085
Author(s):  
Navneet Kaur ◽  
W Rodney Cooper ◽  
Jennifer M Duringer ◽  
Arash Rashed ◽  
Ismael E Badillo-Vargas ◽  
...  

Abstract Our previous study provided correlative evidence that morning glory species harboring endophytic fungi (Periglandula) are resistant to potato psyllid [Bactericera cockerelli (Šulc)], whereas species free of fungi often allowed psyllid development. In this study, we manipulated levels of ergot alkaloids in host tissues by inoculating clippings from potato plants with extracts from morning glories that harbor Periglandula [Ipomoea leptophylla Torrey, Ipomoea imperati (Vahl) Grisebach, Ipomoea tricolor Cavanilles, Ipomoea pandurata (L.) G. F. Meyer, and Turbina corymbosa (L.)] and one species (Ipomoea alba L.) that does not harbor the endophyte. Ergot alkaloids (clavines, lysergic acid amides, and ergopeptines) were detected in potato clippings, thus confirming that leaves had taken up compounds from solutions of crude extracts. Psyllid mortality rates on inoculated clippings ranged between 53 and 93% in treatments producing biochemically detectable levels of alkaloids, when compared with 15% mortality in water controls or the alkaloid-free I. alba. We then tested synthetic analogs from each of the three alkaloid classes that had been detected in the crude extracts. Each compound was assayed by inoculating clippings of two host species (potato and tomato) at increasing concentrations (0, 1, 10, and 100 µg/ml in solution). Psyllids exhibited a large and significant increase in mortality rate beginning at the lowest two concentrations, indicating that even very small quantities of these chemicals led to mortality. Feeding by nymphs on artificial diets containing synthetic compounds resulted in 100% mortality within 48 h, irrespective of compound. Further testing of ergot alkaloids to characterize the mode of action that leads to psyllid mortality is warranted.


2016 ◽  
Vol 106 (2) ◽  
pp. 142-154 ◽  
Author(s):  
J. M. Cicero ◽  
T. W. Fisher ◽  
J. K. Brown

The potato psyllid Bactericera cockerelli is implicated as the vector of the causal agent of zebra chip of potato and vein-greening of tomato diseases. Until now, visual identification of bacteria in the genus ‘Candidatus Liberibacter’ has relied on direct imaging by light and electron microscopy without labeling, or with whole-organ fluorescence labeling only. In this study, aldehyde fixative followed by a coagulant fixative, was used to process adult psyllids for transmission electron microscopy (TEM) colloidal gold in situ hybridization experiments. Results indicated that ‘Ca. Liberibacter solanacearum’ (CLso)-specific DNA probes annealed to a bacterium that formed extensive, monocultural biofilms on gut, salivary gland, and oral region tissues, confirming that it is one morphotype of potentially others, that is rod-shaped, approximately 2.5 µm in diameter and of variable length, and has a rough, granular cytosol. In addition, CLso, prepared from shredded midguts, and negatively stained for TEM, possessed pili- and flagella-like surface appendages. Genes implicating coding capacity for both types of surface structures are encoded in the CLso genome sequence. Neither type was seen for CLso associated with biofilms within or on digestive organs, suggesting that their production is stimulated only in certain environments, putatively, in the gut during adhesion leading to multiplication, and in hemolymph to afford systemic invasion.


2017 ◽  
Vol 41 (2) ◽  
pp. 201-208
Author(s):  
Anni Cristini Silvestri Gomes ◽  
Maria das Graças Cardoso ◽  
Juliano Vilela Resende ◽  
Sérgio Scherrer Thomasi ◽  
Luana Isac Soares ◽  
...  

ABSTRACT One of the main problems facing agriculture is the loss of production as a result of the attack of agricultural pests. Alternative ways to work around this problem are being sought. There are substances called acylsugars that are naturally produced by the wild tomato species S. pennellii and affect arthropod pests. The objectives of this work were to synthesize two acylsugars and assess the biological effect of these on the arthropod pests Bemissia tabaci and Tetranycus urticae. The syntheses were performed via the reactions of glucose and sucrose (saccharose) with acetic anhydride using sodium acetate as the catalyst. The products of these reactions were sucrose octa-acetate and glucose penta-acetate, the structures of which were confirmed by spectroscopic techniques. In a resistance test against the mite, a linear correlation between the concentration of the synthesized substances, and the dislocation of the mite was obtained. A delay in the hatching of the arthropod eggs was observed, causing a mortality rate of approximately 95% in the 1st instar larvae of mites that was confirmed in adults. In the biological tests with Bemisia tabaci, there was a low rate of hatching and emergence, and the effect on the nymphs was the deformation of the emergent adults.


2007 ◽  
Vol 36 (2) ◽  
pp. 161-179 ◽  
Author(s):  
Claudia Dolinski ◽  
Lawrence A. Lacey

2008 ◽  
Vol 101 (1) ◽  
pp. 145-150 ◽  
Author(s):  
N. J. Bostanian ◽  
G. Racette
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document