scholarly journals Novel index of arterial reflected waves, Arterial Velocity pulse Index, relates to muscle sympathetic nerve activity independent of Arterial Pressure volume Index in patients with hypertension

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
H Sugimoto ◽  
H Murai ◽  
T Hamaoka ◽  
Y Mukai ◽  
O Inoue ◽  
...  

Abstract Background Arterial reflected wave is determined by not only atherosclerosis but also sympathetic nerve activity. Recently, Arterial Velocity pulse Index (AVI), which is an index of arterial reflected waves, and Arterial Pressure volume Index (API), which is an index of volume of a conductive blood vessel, have been proposed as new index of arterial stiffness. However, it is unclear whether API and AVI would be associated with muscle sympathetic nerve activity (MSNA) in hypertensive subjects. Purpose The purpose of this study was to evaluate the correlation between AVI, API and MSNA in hypertensive subjects. Method 41 hypertensive patients and 40 non-hypertensive subjects were included in this study. We performed a cross-sectional, observational study. Hypertension (HT) was defined as systolic blood pressure (SBP) ≥140 mmHg, diastolic blood pressure (DBP) ≥90 mmHg or medical treatment for HT. AVI and API was measured by NAS-1000 (Nihon Koden, Japan). MSNA, central sympathetic outflow to peripheral muscle, was recorded directly from peroneal nerve. MSNA was expressed by burst frequency (bursts/minute) and burst incidence (bursts/100heartbeats). Blood pressure, heart rate and MSNA were recorded simultaneously. Results Age, systolic and diastolic pressure were significantly higher in hypertensive patients compared to control (40±15 vs 61±13 years, p<0.001; 142±16 vs 113±9 mmHg, p<0.001; 81±14 vs 67±9 mmHg, p<0.001). MSNA and AVI were significantly augmented in hypertensive patients compared to control (34±11 vs. 23±6 bursts/min, p<0.05; 26±7 vs. 16±4, p<0.05). AVI was correlated with MSNA in each group (hypertension: r=0.59, P<0.001, non-hypertension: r=0.51, p<0.001). However, no correlation was shown between API and MSNA in each group (hypertension: r=0.22, p=0.15, non-hypertension: r=0.07, p=0.63). Multiple regression analysis also showed MSNA was significantly related with AVI but was not with API. Conclusion Our finding showed that AVI relates to MSNA independent of API in patients with hypertension. It suggested that Novel index of arterial reflected waves, AVI, is helpful to estimate augmented SNA in hypertensive subjects regardless of volume of a conductive blood vessel. Funding Acknowledgement Type of funding source: None

Hypertension ◽  
2021 ◽  
Vol 77 (5) ◽  
pp. 1456-1468
Author(s):  
John S. Floras

Multiunit recordings of postganglionic sympathetic outflow to muscle yield otherwise imperceptible insights into sympathetic neural modulation of human vascular resistance and blood pressure. This Corcoran Lecture will illustrate the utility of microneurography to investigate neurogenic cardiovascular regulation; review data concerning muscle sympathetic nerve activity of women and men with normal and high blood pressure; explore 2 concepts, central upregulation of muscle sympathetic outflow and cortical autonomic neuroplasticity; present sleep apnea as an imperfect model of neurogenic hypertension; and expose the paradox of sympathetic excitation without hypertension. In awake healthy normotensive individuals, resting muscle sympathetic nerve activity increases with age, sleep fragmentation, and obstructive apnea. Its magnitude is not signaled by heart rate. Age-related changes are nonlinear and differ by sex. In men, sympathetic nerve activity increases with age but without relation to their blood pressure, whereas in women, both rise concordantly after age 40. Mean values for muscle sympathetic nerve activity burst incidence are consistently higher in cohorts with hypertension than in matched normotensives, yet women’s sympathetic nerve traffic can increase 3-fold between ages 30 and 70 without causing hypertension. Thus, increased sympathetic nerve activity may be necessary but is insufficient for primary hypertension. Moreover, its inhibition does not consistently decrease blood pressure. Despite a half-century of microneurographic research, large gaps remain in our understanding of the content of the sympathetic broadcast from brain to blood vessel and its specific individual consequences for circulatory regulation and cardiovascular, renal, and metabolic risk.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
hiroyuki sugimoto ◽  
Hisayoshi Murai ◽  
Takuto Hamaoka ◽  
Yusuke Mukai ◽  
Yoshitaka Okabe ◽  
...  

Introduction: Augmented sympathetic nerve activity (SNA) in hypertension (HT) is regarded as a therapeutic target, but there is few non-invasive markers to evaluate SNA in clinical practice. It is reported to associate with SNA which increased arterial reflected wave plays the important role in disease progression in HT, and it is reported to associate with SNA. Recently, Arterial Velocity Pulse Index (AVI) are developed as an index of arterial reflected waves, however the relationship between AVI and SNA is still uncertain. Methods: Patients with essential HT and matched non-hypertensive control subjects were included in this study. HT was diagnosed as systolic blood pressure (SBP) ≧ 140 mmHg or diastolic blood pressure (DBP) ≧ 90 mmHg. Patients with secondary HT was excluded. AVI was measured from left upper arm by NAS-1000 (Nihon Koden, Japan). SNA was evaluated by direct recording of muscle sympathetic nerve activity (MSNA) from peroneal nerves. Results: 50 HT patients and 50 control subjects were included. Age, SBP and DBP were significantly increased in HT group compared to control (Age 63±14 vs 42±16 years, p<0.001; SBP 144±16 vs 115±9 mmHg, p<0.001; DBP 80±14 vs 67±9 mmHg, p<0.001). MSNA and AVI were significantly increased in HT group compared to control (MSNA 34±10 vs 25±8 bursts/min, p<0.05; AVI 28±9 vs 17±5, p<0.05). In univariate analysis, AVI was significantly correlated with MSNA, age, and SBP in HT group. However, no significant relationship was observed between AVI and MSNA in multivariate analysis. Therefore, HT group was divided into two groups according to their severity (group 1, SBP<160mmHg, N=30; group 2, SBP>160 mmHg, N=20). AVI in group 1 showed significantly correlation with MSNA (r=0.49, p<0.05), but no correlation was seen in group 2. Conclusions: AVI was significantly increased in patients with HT compared to control, and AVI is significantly associated with MSNA in HT patients with SBP<160mmHg. These results indicate that AVI is helpful to estimate augmented SNA in patients with mild or moderate hypertension. Further study is warranted to exam the relationship AVI and SNA in reality.


2010 ◽  
Vol 299 (3) ◽  
pp. H925-H931 ◽  
Author(s):  
G. S. Gilmartin ◽  
M. Lynch ◽  
R. Tamisier ◽  
J. W. Weiss

Chronic intermittent hypoxia (CIH) is thought to be responsible for the cardiovascular disease associated with obstructive sleep apnea (OSA). Increased sympathetic activation, altered vascular function, and inflammation are all putative mechanisms. We recently reported (Tamisier R, Gilmartin GS, Launois SH, Pepin JL, Nespoulet H, Thomas RJ, Levy P, Weiss JW. J Appl Physiol 107: 17–24, 2009) a new model of CIH in healthy humans that is associated with both increases in blood pressure and augmented peripheral chemosensitivity. We tested the hypothesis that exposure to CIH would also result in augmented muscle sympathetic nerve activity (MSNA) and altered vascular reactivity contributing to blood pressure elevation. We therefore exposed healthy subjects between the ages of 20 and 34 yr ( n = 7) to 9 h of nocturnal intermittent hypoxia for 28 consecutive nights. Cardiovascular and hemodynamic variables were recorded at three time points; MSNA was collected before and after exposure. Diastolic blood pressure (71 ± 1.3 vs. 74 ± 1.7 mmHg, P < 0.01), MSNA [9.94 ± 2.0 to 14.63 ± 1.5 bursts/min ( P < 0.05); 16.89 ± 3.2 to 26.97 ± 3.3 bursts/100 heartbeats (hb) ( P = 0.01)], and forearm vascular resistance (FVR) (35.3 ± 5.8 vs. 55.3 ± 6.5 mmHg·ml−1·min·100 g tissue, P = 0.01) all increased significantly after 4 wk of exposure. Forearm blood flow response following ischemia of 15 min (reactive hyperemia) fell below baseline values after 4 wk, following an initial increase after 2 wk of exposure. From these results we conclude that the increased blood pressure following prolonged exposure to CIH in healthy humans is associated with sympathetic activation and augmented FVR.


2013 ◽  
Vol 304 (5) ◽  
pp. H759-H766 ◽  
Author(s):  
Seth T. Fairfax ◽  
Jaume Padilla ◽  
Lauro C. Vianna ◽  
Michael J. Davis ◽  
Paul J. Fadel

Previous studies in humans attempting to assess sympathetic vascular transduction have related large reflex-mediated increases in muscle sympathetic nerve activity (MSNA) to associated changes in limb vascular resistance. However, such procedures do not provide insight into the ability of MSNA to dynamically control vascular tone on a beat-by-beat basis. Thus we examined the influence of spontaneous MSNA bursts on leg vascular conductance (LVC) and how variations in MSNA burst pattern (single vs. multiple bursts) and burst size may affect the magnitude of the LVC response. In 11 young men, arterial blood pressure, common femoral artery blood flow, and MSNA were continuously recorded during 20 min of supine rest. Signal averaging was used to characterize percent changes in LVC for 15 cardiac cycles following heartbeats associated with and without MSNA bursts. LVC significantly decreased following MSNA bursts, reaching a nadir during the 6th cardiac cycle (single bursts, −2.9 ± 1.1%; and multiple bursts, −11.0 ± 1.4%; both, P < 0.001). Individual MSNA burst amplitudes and the total amplitude of consecutive bursts were related to the magnitude of peak decreases in LVC. In contrast, cardiac cycles without MSNA bursts were associated with a significant increase in LVC (+3.1 ± 0.5%; P < 0.001). Total vascular conductance decreased in parallel with LVC also reaching a nadir around the peak rise in arterial blood pressure following an MSNA burst. Collectively, these data are the first to assess beat-by-beat sympathetic vascular transduction in resting humans, demonstrating robust and dynamic decreases in LVC following MSNA bursts, an effect that was absent for cardiac cycles without MSNA bursts.


2013 ◽  
Vol 305 (8) ◽  
pp. H1238-H1245 ◽  
Author(s):  
Christopher E. Schwartz ◽  
Elisabeth Lambert ◽  
Marvin S. Medow ◽  
Julian M. Stewart

Withdrawal of muscle sympathetic nerve activity (MSNA) may not be necessary for the precipitous fall of peripheral arterial resistance and arterial pressure (AP) during vasovagal syncope (VVS). We tested the hypothesis that the MSNA-AP baroreflex entrainment is disrupted before VVS regardless of MSNA withdrawal using the phase synchronization between blood pressure and MSNA during head-up tilt (HUT) to measure reflex coupling. We studied eight VVS subjects and eight healthy control subjects. Heart rate, AP, and MSNA were measured during supine baseline and at early, mid, late, and syncope stages of HUT. Phase synchronization indexes, measuring time-dependent differences between MSNA and AP phases, were computed. Directionality indexes, indicating the influence of AP on MSNA (neural arc) and MSNA on AP (peripheral arc), were computed. Heart rate was greater in VVS compared with control subjects during early, mid, and late stages of HUT and significantly declined at syncope ( P = 0.04). AP significantly decreased during mid, late, and syncope stages of tilt in VVS subjects only ( P = 0.001). MSNA was not significantly different between groups during HUT ( P = 0.700). However, the phase synchronization index significantly decreased during mid and late stages in VVS subjects but not in control subjects ( P < .001). In addition, the neural arc was significantly affected more than the peripheral arc before syncope. In conclusion, VVS is accompanied by a loss of the synchronous AP-MSNA relationship with or without a loss in MSNA at faint. This provides insight into the mechanisms behind the loss of vasoconstriction and drop in AP independent of MSNA at the time of vasovagal faint.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Jian Cui ◽  
Matthew D Muller ◽  
Allen R Kunselman ◽  
Cheryl Blaha ◽  
Lawrence I Sinoway

Epidemiological data suggest that blood pressure tends to be higher in winter and lower in summer, particularly in the elderly. Moreover, hospitalization and mortality rates due to cardiovascular disease have higher rates in winter than summer. Whether autonomic adjustment including muscle sympathetic nerve activity (MSNA) varies with season is unclear. To test the hypothesis that resting MSNA varies along the seasons, we retrospectively analyzed the supine baseline (6 min) MSNA and heart rate (from ECG) of 57 healthy subjects (33M, 24F, 29 ± 1 yrs, range 22-64 yrs) from studies in our laboratory (room temperature ~23 °C). Each of these subjects from central Pennsylvania was studied during 2 or more seasons (total 231 visits). A linear-mixed effects model, which is an extension of the analysis of variance model accounting for repeated measurements (i.e. season) per subject, was used to assess the association of season with the cardiovascular outcomes. The Tukey-Kramer procedure was used to account for multiple comparisons testing between the seasons. MSNA burst rate in winter (21.3 ± 1.0 burst/min) was significantly greater than in summer (13.7 ± 1.0 burst/min, P < 0.001), spring (17.5 ± 1.6 burst/min, P = 0.04) and fall (17.0 ± 1.2 burst/min, P < 0.002). There was no significant difference in MSNA in other comparisons (spring vs. summer, P = 0.12; spring vs. fall, P = 0.99; summer vs. fall, P = 0.054). Heart rate (63.6 ± 1.1 vs. 60.8 ± 1.2 beats/min, P = 0.048) was significantly greater in winter compared to summer. Blood pressure (automated sphygmomanometry of the brachial artery) was not significantly different between seasons. The results suggest that baseline sympathetic nerve activity varies along the seasons, with peak levels evident in winter. We speculate that the seasonal MSNA variation may contribute to seasonal variations in cardiovascular morbidity and mortality.


Hypertension ◽  
2020 ◽  
Vol 76 (3) ◽  
pp. 997-1005 ◽  
Author(s):  
Daniel A. Keir ◽  
Mark B. Badrov ◽  
George Tomlinson ◽  
Catherine F. Notarius ◽  
Derek S. Kimmerly ◽  
...  

As with blood pressure, age-related changes in muscle sympathetic nerve activity (MSNA) may differ nonlinearly between sexes. Data acquired from 398 male (age: 39±17; range: 18–78 years [mean±SD]) and 260 female (age: 37±18; range: 18–81 years) normotensive healthy nonmedicated volunteers were analyzed using linear regression models with resting MSNA burst frequency as the outcome and the predictors sex, age, MSNA, blood pressure, and body mass index modelled with natural cubic splines. Age and body mass index contributed 41% and 11%, respectively, of MSNA variance in females and 23% and 1% in males. Overall, changes in MSNA with age were sigmoidal. At age 20, mean MSNA of males and females were similar, then diverged significantly, reaching in women a nadir at age 30. After 30, MSNA increased nonlinearly in both sexes. Both MSNA discharge and blood pressure were lower in females until age 50 (17±9 versus 25±10 bursts·min −1 ; P <1×10 −19 ; 106±11/66±8 versus 116±7/68±9 mm Hg; P <0.01) but converged thereafter (38±11 versus 35±12 bursts·min −1 ; P =0.17; 119±15/71±13 versus 120±13/72±9 mm Hg; P >0.56). Compared with age 30, MSNA burst frequency at age 70 was 57% higher in males but 3-fold greater in females; corresponding increases in systolic blood pressure were 1 (95% CI, −4 to 5) and 12 (95% CI, 6–16) mm Hg. Except for concordance in females beyond age 40, there was no systematic change with age in any resting MSNA-blood pressure relationship. In normotensive adults, MSNA increases after age 30, with ascendance steeper in women.


Sign in / Sign up

Export Citation Format

Share Document