scholarly journals Effects of left ventricular mass index on computed tomography derived fractional flow reserve in significant obstructive coronary artery disease

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
T Tsugu ◽  
K Tanaka ◽  
D Belsack ◽  
H Devos ◽  
Y Nagatomo ◽  
...  

Abstract Background In significant obstructive coronary artery disease (SOCAD), a mismatched assessment of the severity of coronary artery stenosis may occur between invasive coronary angiography and computed tomography (CT) derived fractional flow reserve (FFRCT). The exact mechanisms of unexpected underestimation of FFRCT remain unknown. Purpose The aims of this study are (1) to clarify the mechanisms of underestimation on FFRCT; and (2) to identify the predictive factors of FFRCT underestimation above the value of 0.80 in SOCAD vessels. Methods A total of 1160 outpatients who underwent CT angiography (CTA) with FFRCT analysis for suspected coronary artery disease (CAD) between January 2017 and June 2020 were evaluated. Among them, 141 consecutive patients who had both CTA coupled to FFRCT analysis and invasive angiogram showing >75% coronary stenosis were included for analysis. Vessels were divided into two groups according to FFRCT at the distal vessel: FFRCT >0.80 (n=12) and FFRCT ≤0.80 (n=153). Vessel-related parameters, including vessel morphology (vessel length and lumen volume) and plaque components (non-calcified plaque volume and calcified plaque volume) and left ventricular (LV) myocardial-related parameters, including LV wall thickness at each site of the myocardium, and LV mass were evaluated semi-automatically. Results Vessel morphology and plaque components did not differ between FFRCT >0.80 and ≤0.80, whereas LV wall thickness (average; 10.7±2.7 vs. 8.4±1.6 mm, and maximal; 13.5±3.0 vs. 10.6±1.8 mm, all p value <0.001), LV mass (136.4±38.4 vs. 98.8±26.8 g, p<0.001), and LV mass index (73.8±22.6 vs. 51.8±12.2 g/m2, p<0.001) were significantly higher in FFRCT >0.80. Next, we investigated the parameters that correlated with FFRCT. Of all, vessel morphology and plaque components were not related to FFRCT, whereas maximal LV wall thickness, r=0.24, p=0.01; LV mass, r=0.19. p=0.04; and LV mass index, r=0.30, p=0.001) correlated with FFRCT. In the vessels showing FFRCT >0.80, only LV mass (r=0.84, p=0.005) and LV mass index (r=0.67, p=0.047) correlated with FFRCT. (Figure 1). LV mass index was the strongest predictor of a distal FFRCT of >0.80 with the area under curve (AUC) 0.81, 95% CI 0.62 – 1.00, P<0.0001 and an optimal cut-off value of 66.5 g/m2 sensitivity 77.8%, specificity 89.6% (Figure 2). Conclusions FFRCT is affected not by vessel-related parameters but LV myocardial-related parameters in SOCAD. The presence of an excessive LV mass is a major predictor of underestimation of FFRCT in SOCAD vessels. LV myocardial-related parameters should be considered when interpreting numerical values of FFRCT to avoid the possibility of overlooked SOCAD. FUNDunding Acknowledgement Type of funding sources: None. Figure 1 Figure 2

2019 ◽  
Vol 20 (8) ◽  
pp. 875-882 ◽  
Author(s):  
Seong-Mi Park ◽  
Janet Wei ◽  
Galen Cook-Wiens ◽  
Michael D Nelson ◽  
Louise Thomson ◽  
...  

Abstract Aims Women with evidence of ischaemia but no obstructive coronary artery disease (INOCA) often have coronary microvascular dysfunction (CMD). Although invasively measured coronary flow reserve (CFR) is useful for the diagnosis of CMD, intermediate CFR values are often found of uncertain significance. We investigated myocardial flow reserve and left ventricular (LV) structural and functional remodelling in women with suspected INOCA and intermediate CFR. Methods and results Women’s Ischemia Syndrome Evaluation-Coronary Vascular Dysfunction (WISE-CVD) study participants who had invasively measured intermediate CFR of 2.0≤ CFR ≤3.0 (n = 125) were included for this analysis. LV strain, peak filling rate (PFR) and myocardial perfusion reserve index (MPRI) were obtained by cardiac magnetic resonance imaging. Participants were divided: (i) Group 1 (n = 66) high MPRI ≥ 1.8, and (ii) Group 2 (n = 59) low MPRI < 1.8. The mean age was 54 ± 12 years and CFR was 2.46 ± 0.27. MPRI was significantly different but CFR did not differ between groups. LV relative wall thickness (RWT) trended higher in Group 2 and circumferential peak systolic strain and early diastolic strain rate were lower (P = 0.039 and P = 0.035, respectively), despite a similar LV ejection fraction and LV mass. PFR was higher in Group 1 and LV RWT was negatively related to PFR (r = −0.296, P = 0.001). Conclusions In women with suspected INOCA and intermediate CFR, those with lower MPRI had a trend towards more adverse remodelling and impaired diastolic LV function compared with those with higher MPRI. CFR was similar between the two groups. These findings provide evidence that both coronary microvessel vasomotion and structural and functional myocardial remodelling contribute to CMD.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
T Tsugu ◽  
K Tanaka ◽  
D Belsack ◽  
H Devos ◽  
Y Nagatomo ◽  
...  

Abstract Background FFRCT gradually decreases from the proximal to the distal part of a vessel and reach the pathological threshold for significant ischemia even in the absence of obstructive coronary artery disease (CAD). The exact mechanisms of such gradual FFRCT decline remain unknown. Purpose The aims of this study are (1) to clarify the mechanisms of the gradual decline of computed tomography (CT) derived fractional flow reserve (FFRCT); and (2) to identify the predictive factors of an FFRCT decline below the pathological value of 0.80 in no apparent CAD vessels. Methods A total of 1058 outpatients with suspected CAD and who underwent CT angiography (CTA) with FFRCT analysis between January 2017 and December 2019 were evaluated. Among them, 150 consecutive patients who had both a CTA coupled to an FFRCT analysis and an invasive angiogram showing &lt;25% coronary stenosis were included for analysis. Vessels were divided into two groups according to FFRCT at the distal vessel: FFRCT &gt;0.80 (n=317) and FFRCT ≤0.80 (n=114). ΔFFRCT was defined as the magnitude of the change in FFRCT from the proximal to the distal vessel. Plaque characterization and vessel morphology measurements were performed semi-automatically. Vessel constituents were characterized based on Hounsfield units (HU) into lumen volume (&lt;−50 HU), non-calcified plaque (NCP) (−50–150 HU), and calcified plaque (&gt;150 HU). Results FFRCT decreased continuously from the proximal to distal across the three major vessels in both FFRCT&gt;0.80 and FFRCT ≤0.80 groups (Figure 1). Compared to FFRCT&gt;0.80 group, NCP volume was significantly higher in all three major vessels in FFRCT ≤0.80 group (210.2±83.6 mm3 vs. 140.9±139.3 mm3 for the RCA, p=0.01; 177.5±150.2 mm3 vs. 133.2±112.2 mm3 for the LAD, p=0.04; 127.6±91.5 mm3 vs. 58.7±57.7 mm3 for the LCX, p&lt;0.01). Next, we investigated the vessel parameters that correlated with ΔFFRCT. ΔFFRCT was correlated with lumen volume in FFRCT&gt;0.80 group (r=−0.24, p&lt;0.0001), whereas ΔFFRCT was correlated with NCP volume in FFRCT ≤0.80 group (r=0.42, p&lt;0.001) (Figure 2). An NCP volume above 44.8 mm3 was the strongest predictor of distal FFRCT of ≤0.80 (area under the curve 0.69, p&lt;0.0001, sensitivity 95%, specificity 39%). Conclusions FFRCT is affected by vascular morphology and plaque characteristics even in the early stage of coronary artery disease. Our study highlights that subclinical coronary artery disease strongly influences FFRCT by effects unrelated to coronary stenosis. The presence of NCP is a major predictor of the gradual decrease of FFRCT toward pathological values. Anatomical findings as vessel morphology and plaque characteristics should be taken into consideration when interpreting numerical values of FFRCT to avoid unnecessary referrals for invasive coronary angiography or percutaneous coronary intervention. FUNDunding Acknowledgement Type of funding sources: None. Figure 1 Figure 2


Open Heart ◽  
2018 ◽  
Vol 5 (2) ◽  
pp. e000896 ◽  
Author(s):  
Masatoshi Minamisawa ◽  
Jun Koyama ◽  
Ayako Kozuka ◽  
Takashi Miura ◽  
Tatsuya Saigusa ◽  
...  

ObjectiveMyocardial early systolic lengthening (ESL) duration is prolonged in patients with coronary artery disease (CAD). However, the relationship between the fractional flow reserve (FFR), the current gold standard for evaluating physiological myocardial ischaemia, and ESL has not been studied. The aims of this study were to investigate whether left ventricular (LV) ESL duration could identify patients with CAD, and to examine the relationship between FFR and LV ESL duration.MethodsIn this single-centre, cross-sectional, prospective study of 75 patients with suspected or known CAD, we performed two-dimensional speckle tracking echocardiography at rest on the day before coronary angiography or percutaneous coronary intervention. Apical 3 views were used to examine ESL duration, defined as time from onset of the Q wave to maximum myocardial systolic lengthening.ResultsThirty-five patients had non-significant stenosis. Forty patients with CAD underwent FFR testing: 17 had an FFR≥0.8 and 23 had an FFR<0.8. Global ESL duration was 20.9±22.2 ms in patients with non-significant stenosis, 36.4±23.2 ms in patients with FFR≥0.8 and 39.6±29.5 ms in patients with FFR<0.8 (p=0.020). However, global and regional ESL durations were not significantly correlated with FFR and demonstrated poor reproducibility.ConclusionAlthough myocardial ESL duration was significantly prolonged in patients with CAD compared with patients without CAD, ESL at rest showed poor reproducibility, and this new parameter did not predict FFR in patients with suspected CAD.


Heart ◽  
2018 ◽  
Vol 105 (Suppl 1) ◽  
pp. s25-s30 ◽  
Author(s):  
Eddie D Davenport ◽  
Gary Gray ◽  
Rienk Rienks ◽  
Dennis Bron ◽  
Thomas Syburra ◽  
...  

This paper is part of a series of expert consensus documents covering all aspects of aviation cardiology. In this manuscript, we focus on the broad aviation medicine considerations that are required to optimally manage aircrew with established coronary artery disease in those without myocardial infarction or revascularisation (both pilots and non-pilot aviation professionals). We present expert consensus opinion and associated recommendations. It is recommended that in aircrew with non-obstructive coronary artery disease or obstructive coronary artery disease not deemed haemodynamically significant, nor meeting the criteria for excessive burden (based on plaque morphology and aggregate stenosis), a return to flying duties may be possible, although with restrictions. It is recommended that aircrew with haemodynamically significant coronary artery disease (defined by a decrease in fractional flow reserve) or a total burden of disease that exceeds an aggregated stenosis of 120% are grounded. With aggressive cardiac risk factor modification and, at a minimum, annual follow-up with routine non-invasive cardiac evaluation, the majority of aircrew with coronary artery disease can safely return to flight duties.


2020 ◽  
Vol 17 (4) ◽  
Author(s):  
Lin Qi ◽  
Kailei Shi ◽  
Xinkai Qu ◽  
Dingbiao Mao ◽  
Ming Li

Background: Epicardial adipose tissue (EAT) may play a vital role in the progression of ischemia and no obstructive coronary artery disease (INOCA). CT can achieve a precise quantification of EAT for its higher spatial resolution compared to other methods. Objectives: This study aimed at exploring EAT in patients with INOCA, and its associations with other clinical factors. Methods: From January 2017 to October 2018, a total of 254 consecutive patients suspected with coronary atherosclerotic disease (CAD) underwent cardiac computed tomography angiography (CCTA). There were 195 patients who were excluded for obstructive CAD by CCTA analysis and CT derived fractional flow reserve (CT-FFR) (≤ 0.80). Seventy-two patients with either angina and/or signs of ischemia but without obstructive CAD were recruited as INOCA group. Forty-eight controls without angina and risk factors for INOCA were enrolled as the control group. EAT volume and thickness, and other factors were analyzed in INOCA and control groups. Results: Despite similar body mass index (BMI), EAT thickness and volume were significantly elevated in INOCA patients compared with the control group (P < 0.001). Receiver operating characteristic curve analysis for identifying INOCA exhibited a higher area under the curve of EAT volume (0.773, 95%CI 0.616-0.930) than EAT thickness (0.692, 95%CI 0.597-0.786). The cut-off values for EAT thickness and volume were 3.2 mm and 179.6 cm3, respectively. Presence of hypertension, triglyceride levels, and EAT thickness and volume were significantly associated with INOCA and lowly affected by other factors in multiple logistic regression analysis. Conclusions: INOCA patients have more EAT compared with controls. EAT is a marker of INOCA and may be a predictor of pharmacological therapy and a prognostic indicator. Further research should focus on the myocardial microcirculation changes by EAT volume reduction.


2020 ◽  
Vol 116 (4) ◽  
pp. 771-786 ◽  
Author(s):  
Udo Sechtem ◽  
David Brown ◽  
Shigeo Godo ◽  
Gaetano Antonio Lanza ◽  
Hiro Shimokawa ◽  
...  

Abstract Diffuse and focal epicardial coronary disease and coronary microvascular abnormalities may exist side-by-side. Identifying the contributions of each of these three players in the coronary circulation is a difficult task. Yet identifying coronary microvascular dysfunction (CMD) as an additional player in patients with coronary artery disease (CAD) may provide explanations of why symptoms may persist frequently following and why global coronary flow reserve may be more prognostically important than fractional flow reserve measured in a single vessel before percutaneous coronary intervention. This review focuses on the challenges of identifying the presence of CMD in the context of diffuse non-obstructive CAD and obstructive CAD. Furthermore, it is going to discuss the pathophysiology in this complex situation, examine the clinical context in which the interaction of the three components of disease takes place and finally look at non-invasive diagnostic methods relevant for addressing this question.


Sign in / Sign up

Export Citation Format

Share Document