scholarly journals Geometry of the right heart and tricuspid regurgitation to exclude elevated pulmonary artery pressure: new insights

2013 ◽  
Vol 34 (suppl 1) ◽  
pp. P310-P310
Author(s):  
P. De Meester ◽  
A. Van De Bruaene ◽  
P. Herijgers ◽  
J.- U. Voigt ◽  
M. Delcroix ◽  
...  
2013 ◽  
Vol 168 (4) ◽  
pp. 3866-3871 ◽  
Author(s):  
Pieter De Meester ◽  
Alexander Van De Bruaene ◽  
Paul Herijgers ◽  
Jens-Uwe Voigt ◽  
Marion Delcroix ◽  
...  

2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
C Fauvel ◽  
O Raitiere ◽  
J Burdeau ◽  
N Si Belkacem ◽  
F Bauer

Abstract Background Doppler echocardiography is the most widespread and well-recognized technique for the screening of patients with pulmonary hypertension (PH). When tricuspid regurgitation peak velocity (TRPV) ≥3.4 m/s, right heart catheterization is requested to confirm mean pulmonary artery pressure >25 mm Hg. In the proceedings from the 6th world symposium on pulmonary arterial hypertension recently released, the new definition of PH has been lowered to mean pulmonary artery pressure > 20 mm Hg. Purpose The purpose of our work was twofold : i) to determine a new cut-off value for TRPV to accommodate the new hemodynamic definition of PH, ii) to investigate the impact on the demand of right heart catheterization (RHC) from our echo CORE lab. Methods We extracted and analyzed both the haemodynamic and echocardiographic records of 130 patients who underwent investigations the same day. Tricuspid regurgitation peak velocity was measured in apical-4 chamber view using continuous-wave doppler modality and compared to mean pulmonary artery pressure recorded from fluid-filled catheter. Results Tricuspid regurgitation peak velocity has a weak correlation with mean pulmonary pressure (y = 9.2x-2.2, r² = 0.22, p < 0.01). Targeting a mean pulmonary pressure on right heart catheterization of 20 mm Hg for the definition of PH, receiver operating characteristic curve analysis demonstrated a good association between TRPV and PH diagnosis (area under the curve, 0.78 ; p < 0.001). The cut-off value obtained for TRPV was 3.0 m/s (Se = 0.78, Sp = 0.37). From 01/01/18 to 31/12/18, 2539 out of 6215 had TRPV recorded from which 283 had TRPV ≥ 3.0 m/s (24,1%) and 615 had TRPV ≥ 3.4 m/s (11,1%). When applied to a community population the new TRPV cutoff > 3m/s used as surrogate for mean pulmonary artery pressure > 20 mm Hg may produce a 111% increase of right heart catheterization demand. Conclusions The new definition of pulmonary hypertension (invasive mean pulmonary artery pressure > 20mm Hg) necessitates revisiting tricuspid regurgitation peak velocity > 3 m/s as a screening test leading to more than twice RHC demand.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
K Inoue ◽  
E W Remme ◽  
F H Khan ◽  
O S Andersen ◽  
E Gude ◽  
...  

Abstract Background Systolic pulmonary artery pressure (SPAP) can be estimated non-invasively as the sum of indices for right atrial (RA) pressure and tricuspid regurgitation (TR) pressure gradient. Although echocardiographic evaluation of inferior vena cava diameter and collapsibility is currently being used to estimate RA pressure (IVC method), RA strain may be an alternative since atrial strain is related to atrial pressure. Objective We tested if RA strain by speckle tracking echocardiography can be used as a surrogate of mean RA pressure (RA strain method), and by adding the TR pressure gradient, be used to estimate SPAP. Methods We retrospectively analyzed 91 patients (mean age, 58 years) referred to right heart catheterization due to unexplained dyspnea or suspected pulmonary hypertension. Echocardiography was performed within 24 hours of the invasive procedure. RA reservoir strain was calculated from apical four-chamber view. SPAP was calculated as the sum of peak TR pressure gradient and estimated RA pressure by the IVC or RA strain methods. Results Right heart catheterization showed SPAP and mean RA pressures of 51±20 mmHg and 9±6 mmHg, respectively. RA reservoir strain was inversely correlated with mean RA pressure (r=−0.61, p<0.01). Thus, we set mean RA pressure as 5, 10 and 15 mmHg depending on high (≥25%), middle (10–25%) and low (≤10%) values of RA reservoir strain. As shown in the figure, both the RA strain and IVC methods when combined with peak TR velocity, provided good estimates of invasively measured SPAP. Conclusions RA strain provides a semiquantitative measure of RA pressure, which can be used in combination with peak TR velocity to estimate SPAP. This approach can be used as an alternative when the IVC method is not available in cases with poor subcostal window.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
M. Hünlich ◽  
E. Lubos ◽  
B. E. Beuthner ◽  
M. Puls ◽  
A. Bleckmann ◽  
...  

Positive results of MitraClip in terms of improvement in clinical and left ventricular parameters have been described in detail. However, long-term effects on secondary pulmonary hypertension were not investigated in a larger patient cohort to date. 70 patients with severe mitral regurgitation, additional pulmonary hypertension, and right heart failure as a result of left heart disease were treated in the heart centers Hamburg and Göttingen. Immediately after successful MitraClip implantation, a reduction of the RVOT diameter from 3.52 cm to 3.44 cm was observed reaching a statistically significant value of 3.39 cm after 12 months. In contrast, there was a significant reduction in the velocity of the tricuspid regurgitation (TR) from 4.17 m/s to 3.11 m/s, the gradient of the TR from 48.5 mmHg to 39.3 mmHg, and the systolic pulmonary artery pressure (PAPsyst) from 58.6 mmHg to 50.0 mmHg. This decline continued in the following months (Vmax TR 3.09 m/s, peak TR 38.6 mmHg, and PAPsyst 47.4 mmHg). The tricuspid annular plane systolic excursion (TAPSE) increased from 16.5 mm to 18.9 mm after 12 months. MitraClip implantation improves pulmonary artery pressure, tricuspid regurgitation, and TAPSE after 12 months. At the same time, there is a decrease in the RVOT diameter without significant changes in other right ventricular and right atrial dimensions.


2021 ◽  
Author(s):  
Mohammad Aziz ◽  
Steven Romero ◽  
Matthew J. Price ◽  
Rajeev Mohan

Abstract Background Tricuspid Regurgitation (TR) gradient on echocardiogram is used to approximate pulmonary artery pressure (PAP) on echocardiography. A common dilemma is encountered when PAP measurement is indeterminate due to poor TR signal. We hypothesized that patients with poor TR signal would be unlikely to have pulmonary hypertension (PH) on right heart catheterization (RHC). Methods We performed a retrospective analysis of 141 patients who underwent RHC and had a corresponding echocardiogram showing poor TR signal within 2 months of RHC. A cutoff of 25 mm Hg was used as the upper limit of normal to define PH. Results Fifty percent of patients had mean PAP (mPAP) greater than 25 mm Hg. 82% of values were 35 mm Hg or below. Conclusions Poor TR signal does not rule out PH but may indicate lower likelihood of severe PH.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
KIRILL Malikov ◽  
MARINA Kirichkova ◽  
MARIA Simakova ◽  
NARECK Marukyan ◽  
OLGA Moiseeva

Abstract Funding Acknowledgements Type of funding sources: None. Introduction Chronic thromboembolic pulmonary hypertension (CTEPH) leads to a progressive increase in pulmonary vascular resistance (PVR) and pulmonary artery pressure (PAP) with the development of severe dysfunction of the right heart and heart failure. Mortality for three years with an average pressure in the pulmonary artery (PA) of more than 50 mmHg is more than 90%. Balloon pulmonary angioplasty (BPA) has a significant advantage over other methods of surgical treatment, but it requires the determination of additional non-invasive markers of effectiveness. Transthoracic echocardiography (TTE) remains the main method for assessing the morphology and function of the heart. Purpose Compare different indicators reflecting the severity of CTEPH with TTE indicators before and after BPA. To evaluate the effectiveness of using BPA for the treatment of patients with CTEPH using routine TTE and speckle tracking mode. Materials and methods For 18 months 30 patients without concomitant cardiovascular pathology were subjected to several BPA sessions. Before treatment, 50% of patients belonged to the 3 CTEPH functional class (FC), 40% to 2 FC, 10% to 1 FC. The average number of sessions was 4.7 ± 1.3. Before the first BPA and after the last, all the patients were performed: six-minute walk test (6MWT, metres), Borg scale (in points), test for NT-proBNP (pg/ml); TTE with assessment of the right ventricle (RV) and left ventricle (LV) including areas of the right atrium (aRA, cm2), mean pulmonary artery pressure (PUPM,mmHg),RV free wall strain (GLSFW, %), RV free wall strain rate (GLSRFW, sm/sec), RV free wall postsystolic shortening (PSSFW, %), tricuspid annular plane systolic excursion (TAPSE, sm), tricuspid annulus systolic velocity (TASV, sm/sec). Results. Before the first BPA session, the 6MWT in the patient group averaged 315.9 ± 9.08 metres, after - 439.5 ± 11.45 m; the Borg from 5.4 ± 0.94 points decreased to 4 ± 1.01 points; NT-proBNP before the treatment was 1513 ± 13.01 pg/ml, after - 171 ± 6.09; according to TTE the ratio of RV/ LV before and after treatment was 1.31 ± 0.02 and 0.97 ± 0.04; aRA was 29.3 ± 4.87 and 22.3 ± 3.53 cm2; basal RV - 52 ± 5.11 and 44 ± 7.26 mm; PUPM decreased from 76.6 ± 7.65 to 31.3 ± 3.78 mmHg; GLSFW from -14.69 ± 2.33 came to 17.5 ± 3.45 %; GLSRFW with -0.9 ± 0.09 to -1.7 ± 0.11 cm/sec; TAPSE from 16.7 ± 1.87 to 18.2 ± 2.34 cm; TASV from 10.11 ± 1.45 to 12.25 ± 1.98 cm/s, PSSFW before treatment was -18.4 ± 1.2%, after treatment in 66% of patients disappeared, in 34% became an average of 17.4 ± 0.9% The distribution of STEPH FC has also changed. Conclusion. BPA leads to an improvement in the tolerance of physical activity, clinical indicators, and parameters of central hemodynamics in the pulmonary circulation, evaluated according to direct manometry, and leads to reverse remodeling of the RV in the long term. Performing a staged BPA leads to an improvement in the functional parameters of contractility of the RV.


1993 ◽  
Vol 2 (6) ◽  
pp. 474-477 ◽  
Author(s):  
PA Shinners ◽  
MO Pease

OBJECTIVE: To compare hemodynamic measurements made before turning and at 5 and 30 minutes after turning, and to determine whether the stabilization period affects the difference between supine and side-lying pulmonary artery pressures. METHODS: This study was performed in the cardiothoracic surgical intensive care unit of a midwestern university hospital. The 31 postoperative open-heart surgical patients, 26 men and 5 women aged 41 to 76 years (64 +/- 9.3, mean +/- SD) with pulmonary artery catheters in place, were divided into two groups to compare supine to side-lying pressures and the time intervals between the position changes. The supine-first subjects (Group A) were placed in the supine position for baseline measurements and turned to either the right or left side-lying position for the 5- and 30-minute pulmonary artery pressure measurements. The side-first subjects (Group B) were placed in either the right or left side-lying position for baseline measurements and then in the supine position for the 5- and 30-minute pulmonary artery pressure measurements. RESULTS: Pulmonary artery pressures, heart rate and arterial pressure were not significantly different at 5 and 30 minutes. Supine pulmonary artery pressures in Group A were not significantly different from supine pressures in Group B. Side-lying pulmonary artery pressures in Group A were not significantly different from side-lying pressures in Group B. Side-lying vs supine pulmonary artery pressures were significantly different in both Group A and Group B. CONCLUSION: The current practice of turning and settling the patient, zeroing the transducer and proceeding to make the pulmonary artery pressure readings appears to be valid. The stabilization period after turning does not explain the differences found between side-lying and supine pulmonary artery pressures.


1977 ◽  
Author(s):  
M.H. Todd ◽  
J.B. Forrest ◽  
J. Hirsh

Embolisation of the pulmonary vasculature with microspheres releases prostaglandin-1ike substances, PGLS (Piper and Vane, N.Y. Acad. Sei. 180: 363, 1971) but the capacity of autologous blood clots (ABC) to release pulmonary vasoactive substances is disputed. Ten normal mongrel dogs were anesthetised with pentobarbitone sodium and instrumented. Pulmonary venous blood was continuously superfused over isolated tissues for bioassay and then returned to the animal. Injection of ABC into the right atrium increased pulmonary artery pressure from 21 ± 6.5 mm Hg to 38 ± 15 mm Hg (mean ± S.D.), increased arterial pCO2 and decreased arterial pO2. No significant changes in heart rate, systemic arterial blood pressure or cardiac output occurred. In three animals contractions of the blood superfused assay tissues occurred following embolism. This effect was produced in normal assay tissues and those pretreated with antagonists of ACh, Serotonin, Histamine and Catecholamines and could therefore be attributed to PGLS. No cardiovascular or assay tissue tension changes were observed when equivalent volumes of saline or clot lysate were injected into the right atrium.Therefore, pulmonary embolism with ABC can release PGLS which may contribute to the pulmonary artery pressure rise. Vasoactive substances may normally be inactivated in the lung but in some animals appear in pulmonary venous blood.(Supported by the Ontario Heart Foundation)


Sign in / Sign up

Export Citation Format

Share Document