scholarly journals Bioproducts generation from carboxylate platforms by the non-conventional yeast Yarrowia lipolytica

2021 ◽  
Author(s):  
Young-Kyoung Park ◽  
Cristina González-Fernández ◽  
Raúl Robles-Iglesias ◽  
Lea Vidal ◽  
Pierre Fontanille ◽  
...  

Abstract In recent years, there has been a growing interest in the use of renewable sources for bio-based production aiming at developing sustainable and feasible approaches towards a circular economy. Among these renewable sources, organic wastes (OWs) can be anaerobically digested to generate carboxylates like volatile fatty acids (VFAs), lactic acid, and longer-chain fatty acids that are regarded as novel building blocks for the synthesis of value-added compounds by yeasts. This review discusses on the processes that can be used to create valuable molecules from OW-derived VFAs; the pathways employed by the oleaginous yeast Yarrowia lipolytica to directly metabolize such molecules; and the relationship between OW composition, anaerobic digestion, and VFA profiles. The review also summarizes the current knowledge about VFA toxicity, the pathways by which VFAs are metabolized, and the metabolic engineering strategies that can be employed in Y. lipolytica to produce value-added biobased compounds from VFAs.

2012 ◽  
Vol 114 ◽  
pp. 443-449 ◽  
Author(s):  
Pierre Fontanille ◽  
Vinod Kumar ◽  
Gwendoline Christophe ◽  
Régis Nouaille ◽  
Christian Larroche

2019 ◽  
Vol 117 (1) ◽  
pp. 238-250 ◽  
Author(s):  
Mercedes Llamas ◽  
Jose Antonio Magdalena ◽  
Cristina González‐Fernández ◽  
Elia Tomás‐Pejó

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sivamoke Dissook ◽  
Tomohisa Kuzuyama ◽  
Yuri Nishimoto ◽  
Shigeru Kitani ◽  
Sastia Putri ◽  
...  

AbstractMethyl erythritol phosphate (MEP) is the metabolite found in the MEP pathway for isoprenoid biosynthesis, which is known to be utilized by plants, algae, and bacteria. In this study, an unprecedented observation was found in the oleaginous yeast Yarrowia lipolytica, in which one of the chromatographic peaks was annotated as MEP when cultivated in the nitrogen limiting condition. This finding raised an interesting hypothesis of whether Y. lipolytica utilizes the MEP pathway for isoprenoid biosynthesis or not, because there is no report of yeast harboring the MEP pathway. Three independent approaches were used to investigate the existence of the MEP pathway in Y. lipolytica; the spiking of the authentic standard, the MEP pathway inhibitor, and the 13C labeling incorporation analysis. The study suggested that the mevalonate and MEP pathways co-exist in Y. lipolytica and the nitrogen limiting condition triggers the utilization of the MEP pathway in Y. lipolytica.


2013 ◽  
Vol 98 (1) ◽  
pp. 251-262 ◽  
Author(s):  
A. Beopoulos ◽  
J. Verbeke ◽  
F. Bordes ◽  
M. Guicherd ◽  
M. Bressy ◽  
...  

2013 ◽  
Vol 165 (3-4) ◽  
pp. 184-194 ◽  
Author(s):  
John Blazeck ◽  
Leqian Liu ◽  
Rebecca Knight ◽  
Hal S. Alper

Sign in / Sign up

Export Citation Format

Share Document