scholarly journals Tumor Necrosis Factor Superfamily: Ancestral Functions and Remodeling in Early Vertebrate Evolution

2020 ◽  
Vol 12 (11) ◽  
pp. 2074-2092
Author(s):  
Ignacio Marín

Abstract The evolution of the tumor necrosis factor superfamily (TNFSF) in early vertebrates is inferred by comparing the TNFSF genes found in humans and nine fishes: three agnathans, two chondrichthyans, three actinopterygians, and the sarcopterygian Latimeria chalumnae. By combining phylogenetic and synteny analyses, the TNFSF sequences detected are classified into five clusters of genes and 24 orthology groups. A model for their evolution since the origin of vertebrates is proposed. Fifteen TNFSF genes emerged from just three progenitors due to the whole-genome duplications (WGDs) that occurred before the agnathan/gnathostome split. Later, gnathostomes not only kept most of the genes emerged in the WGDs but soon added several tandem duplicates. More recently, complex, lineage-specific patterns of duplications and losses occurred in different gnathostome lineages. In agnathan species only seven to eight TNFSF genes are detected, because this lineage soon lost six of the genes emerged in the ancestral WGDs and additional losses in both hagfishes and lampreys later occurred. The orthologs of many of these lost genes are, in mammals, ligands of death-domain-containing TNFSF receptors, indicating that the extrinsic apoptotic pathway became simplified in the agnathan lineage. From the patterns of emergence of these genes, it is deduced that both the regulation of apoptosis and the control of the NF-κB pathway that depends in modern mammals on TNFSF members emerged before the ancestral vertebrate WGDs.

2002 ◽  
Vol 22 (17) ◽  
pp. 6034-6045 ◽  
Author(s):  
Kai-Li He ◽  
Adrian T. Ting

ABSTRACT Tumor necrosis factor receptor 1 (TNFR1) can trigger distinct signaling pathways leading to either the activation of NF-κB transcription factors or apoptosis. NF-κB activation results in the expression of antiapoptotic genes that inhibit the apoptosis pathway that is activated in parallel. However, the molecular mechanism of this inhibition remains poorly characterized. We have isolated a Jurkat T-cell mutant that exhibits enhanced sensitivity to TNF-induced apoptosis as a result of a deficiency in I-κB kinase γ (IKKγ)/NEMO, an essential component of the IKK complex and NF-κB pathway. We show here that the zinc finger protein A20 is an NF-κB-inducible gene that can protect the IKKγ-deficient cells from TNF-induced apoptosis by disrupting the recruitment of the death domain signaling molecules TRADD and RIP to the receptor signaling complex. Our study, together with reports on the role of other antiapoptotic proteins such as c-FLIP and c-IAP, suggests that, in order to ensure an effective shutdown of the apoptotic pathway, TNF induces multiple NF-κB-dependent genes that inhibit successive steps in the TNFR1 death signaling pathway.


2001 ◽  
Vol 21 (12) ◽  
pp. 3986-3994 ◽  
Author(s):  
Anne Devin ◽  
Yong Lin ◽  
Shoji Yamaoka ◽  
Zhiwei Li ◽  
Michael Karin ◽  
...  

ABSTRACT The activation of IκB kinase (IKK) is a key step in the nuclear translocation of the transcription factor NF-κB. IKK is a complex composed of three subunits: IKKα, IKKβ, and IKKγ (also called NEMO). In response to the proinflammatory cytokine tumor necrosis factor (TNF), IKK is activated after being recruited to the TNF receptor 1 (TNF-R1) complex via TNF receptor-associated factor 2 (TRAF2). We found that the IKKα and IKKβ catalytic subunits are required for IKK-TRAF2 interaction. This interaction occurs through the leucine zipper motif common to IKKα, IKKβ, and the RING finger domain of TRAF2, and either IKKα or IKKβ alone is sufficient for the recruitment of IKK to TNF-R1. Importantly, IKKγ is not essential for TNF-induced IKK recruitment to TNF-R1, as this occurs efficiently in IKKγ-deficient cells. Using TRAF2−/− cells, we demonstrated that the TNF-induced interaction between IKKγ and the death domain kinase RIP is TRAF2 dependent and that one possible function of this interaction is to stabilize the IKK complex when it interacts with TRAF2.


1999 ◽  
Vol 274 (24) ◽  
pp. 16773-16781 ◽  
Author(s):  
Roberto Doliana ◽  
Maurizio Mongiat ◽  
Francesco Bucciotti ◽  
Emiliana Giacomello ◽  
Rainer Deutzmann ◽  
...  

2020 ◽  
Vol 21 (9) ◽  
pp. 3325 ◽  
Author(s):  
Olga Raducka-Jaszul ◽  
Dżamila M. Bogusławska ◽  
Natalia Jędruchniewicz ◽  
Aleksander F. Sikorski

Apoptosis is a process of programmed cell death which has an important role in tissue homeostasis and in the control of organism development. Here, we focus on information concerning the role of the extrinsic apoptotic pathway in the control of human erythropoiesis. We discuss the role of tumor necrosis factor α (TNFα), tumor necrosis factor ligand superfamily member 6 (FasL), tumor necrosis factor-related apoptosis-inducing (TRAIL) and caspases in normal erythroid maturation. We also attempt to initiate a discussion on the observations that mature erythrocytes contain most components of the receptor-dependent apoptotic pathway. Finally, we point to the role of the extrinsic apoptotic pathway in ineffective erythropoiesis of different types of β-thalassemia.


Sign in / Sign up

Export Citation Format

Share Document