cytokine tumor necrosis factor
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 39)

H-INDEX

35
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Aislinn D. Maguire ◽  
John R. Bethea ◽  
Bradley J. Kerr

Multiple Sclerosis (MS) is a debilitating autoimmune disease often accompanied by severe chronic pain. The most common type of pain in MS, called neuropathic pain, arises from disease processes affecting the peripheral and central nervous systems. It is incredibly difficult to study these processes in patients, so animal models such as experimental autoimmune encephalomyelitis (EAE) mice are used to dissect the complex mechanisms of neuropathic pain in MS. The pleiotropic cytokine tumor necrosis factor α (TNFα) is a critical factor mediating neuropathic pain identified by these animal studies. The TNF signaling pathway is complex, and can lead to cell death, inflammation, or survival. In complex diseases such as MS, signaling through the TNFR1 receptor tends to be pro-inflammation and death, whereas signaling through the TNFR2 receptor is pro-homeostatic. However, most TNFα-targeted therapies indiscriminately block both arms of the pathway, and thus are not therapeutic in MS. This review explores pain in MS, inflammatory TNF signaling, the link between the two, and how it could be exploited to develop more effective TNFα-targeting pain therapies.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6949
Author(s):  
 Ok-Joo Sul ◽  
Seung Won Ra

Oxidative stress caused by the production of reactive oxygen species (ROS) plays a major role in inflammatory processes. We hypothesized that modulation of ROS via quercetin may protect against oxidative stress and inflammation. Thus, this study aimed to investigate the effects of quercetin on oxidative stress and inflammation in lung epithelial A549 cells. The lipopolysaccharide (LPS)-induced elevation of intracellular ROS levels was reduced after quercetin treatment, which also almost completely abolished the mRNA and protein expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) induced by LPS stimulation. In addition, quercetin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and reduced levels of inflammatory cytokine tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6, which had increased significantly after LPS exposure. Our data demonstrated that quercetin decreased ROS-induced oxidative stress and inflammation by suppressing NOX2 production.


Author(s):  
Bindu Chandrasekharan ◽  
Darra Boyer ◽  
Joshua A Owens ◽  
Alexandra A Wolfarth ◽  
Bejan J Saeedi ◽  
...  

Abstract We have demonstrated that neuropeptide Y (NPY) can regulate pro-inflammatory signaling in the gut via cross-talk with the pro-inflammatory cytokine tumor necrosis factor (TNF). Here, we investigated if selective blocking of NPY receptors, NPY1R or NPY2R, using small molecule non-peptide antagonists (BIBP-3222 for NPY1R and BIIE-0246 for NPY2R) in the colon could attenuate intestinal inflammation by lowering TNF levels (BIBP - N-[(1R)]-4-[(Aminoiminomethyl)amino-1-[[[(4-hydroxyphenyl)methyl]amino]carbonyl]butyl-α-phenylbenzeneacetamide; BIIE - N-[(1S)-4-[(Aminoiminomethyl)amino]-1-[[[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]amino]carbonyl]butyl]-1-[2-[4-(6,11-dihydro-6-oxo-5H-dibenz[b,e]azepin-11-yl)-1-piperazinyl]-2-oxoethyl]-cyclopentaneacetamide). Colitis was induced using dextran sodium sulfate in drinking water for 7 days, or by adoptive T-cell transfer in RAG-/- mice. Colonic biopsies from healthy subjects (n = 10) and IBD patients (n = 34, UC = 20, CD = 14) were cultured ex vivo in presence or absence of NPY antagonists (100 µM, 20 h), and cytokine release into culture supernatants was measured by ELISA. Intracolonic administration of BIBP (but not BIIE) significantly reduced clinical, endoscopic, and histological scores, and serum TNF, interleukin (IL)-6, and IL-12p70 in DSS colitis; it also significantly attenuated histological damage and serum IL-6 in T-cell colitis (P < .05). Intracolonic administration of BIBP significantly reduced TNF and interferon (IFN)-γ release from UC biopsies, whereas BIIE downregulated only IFN-γ (P < .05). BIBP significantly reduced TNF and interferon (IFN)-γ release from UC biopsies, whereas BIIE downregulated only IFN-γ (P < .05). Our data suggest a promising therapeutic value for NPY1R inhibition in alleviating intestinal inflammation in UC, possibly as enemas to IBD patients.


2021 ◽  
Author(s):  
Terry Ching ◽  
jyothsna vasudevan ◽  
Shu-Yung Chang ◽  
Hsih Yin Tan ◽  
Chwee Teck Lim ◽  
...  

Anatomically and biologically relevant vascular models are critical to progress our understanding of cardiovascular diseases (CVDs) that can lead to effective therapies. Despite advances in 3D bioprinting, recapitulating complex architectures (i.e., freestanding, branching, multilayered, perfusable) of a cell-laden vascular construct remains technically challenging, and the development of new techniques that can recapitulate both anatomical and biological features of blood vessels is of paramount importance. In this work, we introduce a unique, microfluidics-enabled molding technique that allows us to fabricate anatomically-relevant, cell-laden hydrogel vascular models. Our approach employed 3D-printed porous molds of poly(ethylene glycol) diacrylate (PEGDA) as templates to cast alginate-containing bioinks. Due to the porous and aqueous nature of the PEGDA mold, the calcium ion (Ca2+) was diffusively released to crosslink the bioinks to create hollow structures. Applying this technique, multiscale, multilayered vascular constructs that were freestanding and perfusable were readily fabricated using cell-compatible bioinks (i.e., alginate and gelatin methacryloyl (GelMA)). The bioinks were also readily customizable to either improve the compatibility with specific vascular cells or tune the mechanical modulus to mimic native blood vessels. Importantly, we successfully integrated smooth muscle cells and endothelial cells in a biomimetic organization within our vessel constructs and demonstrated a significant increase in monocyte adhesion upon stimulation with an inflammatory cytokine, tumor necrosis factor-alpha (TNF-α). We also demonstrated that the fabricated vessels were amenable for testing percutaneous coronary interventions (i.e., drug-eluting balloons and stents) under physiologically-relevant mechanical states, such as vessel stretching and bending. Overall, we introduce a versatile fabrication technique with multi-faceted possibilities of generating biomimetic vascular models that can benefit future research in mechanistic understanding of CVD progression and the development of therapeutic interventions.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Natasja A. Otto ◽  
Liza Pereverzeva ◽  
Valentine Leopold ◽  
Ivan Ramirez-Moral ◽  
Joris J. T. H. Roelofs ◽  
...  

Hypoxia-inducible factor- (HIF-) 1α has been implicated in the ability of cells to adapt to alterations in oxygen levels. Bacterial stimuli can induce HIF1α in immune cells, including those of myeloid origin. We here determined the role of myeloid cell HIF1α in the host response during pneumonia and sepsis caused by the common human pathogen Klebsiella pneumoniae. To this end, we generated mice deficient for HIF1α in myeloid cells (LysM-cre × Hif1αfl/fl) or neutrophils (Mrp8-cre × Hif1αfl/fl) and infected these with Klebsiella pneumoniae via the airways. Myeloid, but not neutrophil, HIF1α-deficient mice had increased bacterial loads in the lungs and distant organs after infection as compared to control mice, pointing at a role for HIF1α in macrophages. Myeloid HIF1α-deficient mice did not show increased bacterial growth after intravenous infection, suggesting that their phenotype during pneumonia was mediated by lung macrophages. Alveolar and lung interstitial macrophages from LysM-cre × Hif1αfl/fl mice produced lower amounts of the immune enhancing cytokine tumor necrosis factor upon stimulation with Klebsiella, while their capacity to phagocytose or to produce reactive oxygen species was unaltered. Alveolar macrophages did not upregulate glycolysis in response to lipopolysaccharide, irrespective of HIF1α presence. These data suggest a role for HIF1α expressed in lung macrophages in protective innate immunity during pneumonia caused by a common bacterial pathogen.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1785
Author(s):  
Haritha L. Desu ◽  
Placido Illiano ◽  
James S. Choi ◽  
Maureen C. Ascona ◽  
Han Gao ◽  
...  

Multiple sclerosis (MS) is a neuroimmune disorder characterized by inflammation, CNS demyelination, and progressive neurodegeneration. Chronic MS patients exhibit impaired remyelination capacity, partly due to the changes that oligodendrocyte precursor cells (OPCs) undergo in response to the MS lesion environment. The cytokine tumor necrosis factor (TNF) is present in the MS-affected CNS and has been implicated in disease pathophysiology. Of the two active forms of TNF, transmembrane (tmTNF) and soluble (solTNF), tmTNF signals via TNFR2 mediating protective and reparative effects, including remyelination, whereas solTNF signals predominantly via TNFR1 promoting neurotoxicity. To better understand the mechanisms underlying repair failure in MS, we investigated the cellular responses of OPCs to inflammatory exposure and the specific role of TNFR2 signaling in their modulation. Following treatment of cultured OPCs with IFNγ, IL1β, and TNF, we observed, by RNA sequencing, marked inflammatory and immune activation of OPCs, accompanied by metabolic changes and dysregulation of their proliferation and differentiation programming. We also established the high likelihood of cell–cell interaction between OPCs and microglia in neuroinflammatory conditions, with OPCs able to produce chemokines that can recruit and activate microglia. Importantly, we showed that these functions are exacerbated when TNFR2 is ablated. Together, our data indicate that neuroinflammation leads OPCs to shift towards an immunomodulatory phenotype while diminishing their capacity to proliferate and differentiate, thus impairing their repair function. Furthermore, we demonstrated that TNFR2 plays a key role in this process, suggesting that boosting TNFR2 activation or its downstream signals could be an effective strategy to restore OPC reparative capacity in demyelinating disease.


2021 ◽  
Vol 14 (679) ◽  
pp. eabb0969
Author(s):  
Monique T. Fonseca ◽  
Eduardo H. Moretti ◽  
Lucas M. M. Marques ◽  
Bianca F. Machado ◽  
Camila F. Brito ◽  
...  

Production of the proinflammatory cytokine tumor necrosis factor (TNF) must be precisely regulated for effective host immunity without the induction of collateral tissue damage. Here, we showed that TNF production was driven by a spleen-liver axis in a rat model of systemic inflammation induced by bacterial lipopolysaccharide (LPS). Analysis of cytokine expression and secretion in combination with splenectomy and hepatectomy revealed that the spleen generated not only TNF but also factors that enhanced TNF production by the liver, the latter of which accounted for nearly half of the TNF secreted into the circulation. Using mass spectrometry–based lipidomics, we identified leukotriene B4 (LTB4) as a candidate blood-borne messenger in this spleen-liver axis. LTB4 was essential for spleen-liver communication in vivo, as well as for humoral signaling between splenic macrophages and Kupffer cells in vitro. LPS stimulated the splenic macrophages to secrete LTB4, which primed Kupffer cells to secrete more TNF in response to LPS in a manner dependent on LTB4 receptors. These findings provide a framework to understand how systemic inflammation can be regulated at the level of interorgan communication.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2347
Author(s):  
Anum Firdous ◽  
Sadia Sarwar ◽  
Fawad Ali Shah ◽  
Sobia Tabasum ◽  
Alam Zeb ◽  
...  

Rosa webbiana L. (Rosaceae) is one of the least reported and most understudied members of this family. It is native to the Himalayan regions of Pakistan and Nepal. The anti-convulsant effect of n-hexane extract of fruit of Rosa webbiana was investigated in a pentylenetetrazole (PTZ)-induced animal model of epilepsy. Male Sprague-Dawley rats were divided into six groups (n = 7) including control, PTZ (40 mg/kg), diazepam (4 mg/kg) and n-hexane extract (at 50, 150 and 300 mg/kg). Convulsive behavior was observed and resultant seizures were scored, animals sacrificed and their brains preserved. Chitosan nanoparticles were prepared using the ionic gelation method and characterized by UV-analysis, zeta potential and Fourier transform infrared spectroscopy (FTIR). The effects of all the treatments on the expression of phosphorylated cytokine tumor necrosis factor α (p-TNF-α) and phosphorylated transcription factor nuclear factor kappa B (p-NF-κB) expression in the cortex and hippocampus of the brains of treated rats were studied through enzyme linked immunosorbent assay (ELISA) and morphological differences and surviving neuronal number were recorded through hematoxylene and eosin (H&E) staining. Significant changes in seizures score and survival rate of rats were observed. Downregulation of neuro-inflammation, p-TNF-α and p-NF-κB was evident. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of this fraction showed multiple constituents of interest, including esters, alkanes and amines.


Author(s):  
Matthew Luzentales-Simpson ◽  
Yvonne C. F. Pang ◽  
Ada Zhang ◽  
James A. Sousa ◽  
Laura M. Sly

Inflammatory bowel diseases (IBD), encompassing ulcerative colitis (UC), and Crohn’s disease (CD), are a group of disorders characterized by chronic, relapsing, and remitting, or progressive inflammation along the gastrointestinal tract. IBD is accompanied by massive infiltration of circulating leukocytes into the intestinal mucosa. Leukocytes such as neutrophils, monocytes, and T-cells are recruited to the affected site, exacerbating inflammation and causing tissue damage. Current treatments used to block inflammation in IBD include aminosalicylates, corticosteroids, immunosuppressants, and biologics. The first successful biologic, which revolutionized IBD treatment, targeted the pro-inflammatory cytokine, tumor necrosis factor alpha (TNFα). Infliximab, adalimumab, and other anti-TNF antibodies neutralize TNFα, preventing interactions with its receptors and reducing the inflammatory response. However, up to 40% of people with IBD become unresponsive to anti-TNFα therapy. Thus, more recent biologics have been designed to block leukocyte trafficking to the inflamed intestine by targeting integrins and adhesins. For example, natalizumab targets the α4 chain of integrin heterodimers, α4β1 and α4β7, on leukocytes. However, binding of α4β1 is associated with increased risk for developing progressive multifocal leukoencephalopathy, an often-fatal disease, and thus, it is not used to treat IBD. To target leukocyte infiltration without this life-threatening complication, vedolizumab was developed. Vedolizumab specifically targets the α4β7 integrin and was approved to treat IBD based on the presumption that it would block T-cell recruitment to the intestine. Though vedolizumab is an effective treatment for IBD, some studies suggest that it may not block T-cell recruitment to the intestine and its mechanism(s) of action remain unclear. Vedolizumab may reduce inflammation by blocking recruitment of T-cells, or pro-inflammatory monocytes and dendritic cells to the intestine, and/or vedolizumab may lead to changes in the programming of innate and acquired immune cells dampening down inflammation.


Sign in / Sign up

Export Citation Format

Share Document