scholarly journals A High-Quality Grapevine Downy Mildew Genome Assembly Reveals Rapidly Evolving and Lineage-Specific Putative Host Adaptation Genes

2019 ◽  
Vol 11 (3) ◽  
pp. 954-969 ◽  
Author(s):  
Yann Dussert ◽  
Isabelle D Mazet ◽  
Carole Couture ◽  
Jérôme Gouzy ◽  
Marie-Christine Piron ◽  
...  

Abstract Downy mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94 Mb assembly with high contiguity (359 scaffolds for a N50 of 706.5 kb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plant–pathogen interactions. Plasmopara viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species.

2018 ◽  
Author(s):  
Yann Dussert ◽  
Isabelle D. Mazet ◽  
Carole Couture ◽  
Jérôme Gouzy ◽  
Marie-Christine Piron ◽  
...  

ABSTRACTDowny mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94 Mb assembly with high continuity (359 scaffolds for a N50 of 706.5 kb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plant-pathogen interactions. Pl. viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species.DATA AVAILABILITYRaw reads and genome assemblies have been deposited in GenBank (BioProjects PRJNA329579 for Pl. viticola and PRJNA448661 for Pl. muralis). Genome assemblies, gene annotations and analysis files (e.g. orthology relationships, full tables for GO enrichment analyses, pairwise dN/dS values and branch-site tests) have been deposited in Dataverse (Pl. viticola assembly and annotation: doi.org/10.15454/4NYHD6, Pl. muralis assembly and annotation: doi.org/10.15454/Q1QJYK, analysis files: doi.org/10.15454/8NZ8X9). Links to the data and information about the grapevine downy mildew genome project can be found at http://grapevine-downy-mildew-genome.com/.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Yann Dussert ◽  
Jérôme Gouzy ◽  
Sylvie Richart-Cervera ◽  
Isabelle D. Mazet ◽  
Laurent Delière ◽  
...  

Plasmopara viticola is a biotrophic pathogenic oomycete responsible for grapevine downy mildew. We present here the first draft of the P. viticola genome. Analysis of this sequence will help in understanding plant-pathogen interactions in oomycetes, especially pathogen host specialization and adaptation to host resistance.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 575-580 ◽  
Author(s):  
Silvia Dagostin ◽  
Tiziano Formolo ◽  
Oscar Giovannini ◽  
Ilaria Pertot ◽  
Annegret Schmitt

The ability of sage (Salvia officinalis) extract to control grapevine downy mildew under greenhouse and field conditions was tested. The persistence and rainfastness of sage extract were also investigated. Sage extract provided a high level of sustained disease control in artificially inoculated, potted grapevine under greenhouse conditions. However, even small amounts of simulated rainfall (10 mm) significantly reduced efficacy of sage extract. In a field experiment in 2006, sage extract provided 94% reduction in disease incidence and 63% reduction in area under the disease progress curve for disease severity on berries and leaves, respectively, reaching a level of disease control not significantly different from that provided by copper hydroxide. In 2007, the sage extract provided only a partial reduction (less than 30%) of downy mildew on leaves, probably as a result of a long rainy period between two of the consecutive treatments. Overall, sage extract effectively controlled grapevine downy mildew and could be a promising alternative to copper in organic viticulture. However, the low rainfastness of this treatment adversely affected its efficacy.


2020 ◽  
Author(s):  
Yann Dussert ◽  
Ludovic Legrand ◽  
Isabelle D. Mazet ◽  
Carole Couture ◽  
Marie-Christine Piron ◽  
...  

ABSTRACTMating types are self-incompatibility systems that promote outcrossing in plants, fungi and oomycetes. Mating-type genes have been widely studied in plants and fungi, but have yet to be identified in oomycetes, eukaryotic organisms closely related to brown algae that cause many destructive animal and plant diseases. We identified the mating-type locus of Plasmopara viticola, the oomycete responsible for grapevine downy mildew, one of the most damaging grapevine diseases worldwide. Using a genome-wide association approach, we identified a 570 kb repeat-rich non-recombining region controlling mating types, with two highly divergent alleles. We showed that one mating type was homozygous, whereas the other was heterozygous at this locus. The mating-type locus encompassed 40 genes, including one encoding a putative hormone receptor. Our findings have fundamental implications for our understanding of the evolution of mating types, as they reveal a unique determinism involving an asymmetry of heterozygosity, as in sex chromosomes and unlike other mating-type systems. This identification of the mating-type locus in such an economically important crop pathogen also has applied implications, as outcrossing facilitates rapid evolution and resistance to harsh environmental conditions.


Proceedings ◽  
2019 ◽  
Vol 29 (1) ◽  
pp. 34
Author(s):  
Camelia Ungureanu ◽  
Liliana Cristina Soare ◽  
Diana Vizitiu ◽  
Mirela Calinescu ◽  
Irina Fierascu ◽  
...  

In order to test some biofungicides, the isolation of Plasmopara viticola was carried out.Plasmopara viticola is a fungus that causes the grapevine downy mildew disease [...]


2020 ◽  
Vol 30 (20) ◽  
pp. 3897-3907.e4 ◽  
Author(s):  
Yann Dussert ◽  
Ludovic Legrand ◽  
Isabelle D. Mazet ◽  
Carole Couture ◽  
Marie-Christine Piron ◽  
...  

ChemInform ◽  
2012 ◽  
Vol 43 (9) ◽  
pp. no-no
Author(s):  
Muna Ali Abdalla ◽  
Hnin Yu Win ◽  
Md. Tofazzal Islam ◽  
Andreas von Tiedemann ◽  
Anja Schueffler ◽  
...  

2013 ◽  
Vol 103 (10) ◽  
pp. 1035-1044 ◽  
Author(s):  
P. Luis ◽  
A. Gauthier ◽  
S. Trouvelot ◽  
B. Poinssot ◽  
P. Frettinger

Plant diseases caused by fungi and oomycetes result in significant economic losses every year. Although phylogenetically distant, these organisms share many common features during infection. We identified genes in the oomycete Plasmopara viticola that are potentially involved in pathogenesis in grapevine by using fungal databases and degenerate primers. Fragments of P. viticola genes encoding NADH-ubiquinone oxidoreductase (PvNuo), laccase (PvLac), and invertase (PvInv) were obtained. PvNuo was overexpressed at 2 days postinoculation (dpi), during the development of the first hyphal structures and haustoria. PvLac was overexpressed at 5 dpi when genes related to pterostilbene biosynthesis were induced in grapevine. Transcript level for PvInv increased between 1 and 4 dpi before reaching a plateau. These results might suggest a finely tuned strategy of infection depending on nutrition and plant response. Phylogenetic analyses of PvNuo showed that P. viticola clustered with other oomycetes and was associated with brown algae and diatoms, forming a typical Straminipila clade. Based on the comparison of available sequences for laccases and invertases, the group formed by P. viticola and other oomycetes tended to be more closely related to Opisthokonta than to Straminipila. Convergent evolution or horizontal gene transfer could explain the presence of fungus-like genes in P. viticola.


2011 ◽  
Vol 64 (10) ◽  
pp. 655-659 ◽  
Author(s):  
Muna Ali Abdalla ◽  
Hnin Yu Win ◽  
Md. Tofazzal Islam ◽  
Andreas von Tiedemann ◽  
Anja Schüffler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document