scholarly journals GLUCOSE REPRESSION OF AMYLASE GENE EXPRESSION IN DROSOPHILA MELANOGASTER

Genetics ◽  
1986 ◽  
Vol 114 (1) ◽  
pp. 137-144
Author(s):  
Bernhard F Benkel ◽  
Donal A Hickey

ABSTRACT We have previously shown that dietary glucose can reduce amylase activity in both adults and larvae of Drosophila; this reduction in enzyme activity reflects a reduction in the quantity of amylase protein, rather than an inhibition of enzyme activity. Here, we report that we have now defined conditions in which the repressive effect of glucose can be greater than 100-fold. Moreover, this repression is partially counteracted by the addition of exogenous cyclic AMP. We also show that there is a direct correlation between changes in amylase activity and changes in the amount of translatable mRNA as assayed in microinjected Xenopus oocytes. This means that the glucose repression is occurring at a pretranslational stage.

Genetics ◽  
1986 ◽  
Vol 114 (3) ◽  
pp. 943-954
Author(s):  
Bernhard F Benkel ◽  
Donal A Hickey

ABSTRACT A number of previous studies have established that amylase activity can vary between Drosophila strains which are maintained under identical laboratory conditions. In addition, we have recently shown that all strains examined so far are subject to glucose repression of amylase activity. In this study, we show that the degree of glucose repression can vary between strains. Moreover, the glucose repression effect is much more pronounced in larvae than in adult flies. Our results lead to the conclusion that the strain-specific differences in activity and the dietary effects are not independent phenomena. These results have implications for the interpretation of many studies on amylase activity variation, including those experiments which have been designed to link amylase activity variations with fitness differences in nature. A question that naturally arises concerns the molecular basis for these strain-specific variations in the degree of glucose repression of this eukaryotic gene.


1981 ◽  
Vol 90 (1) ◽  
pp. 101-107 ◽  
Author(s):  
R L Davis ◽  
J A Kiger

The cyclic AMP and cyclic GMP phosphodiesterase activities present in flies of six mutant strains of the dunce gene and in the parent wild-type strains are characterized. All of the mutants exhibit aberrant cyclic AMP metabolism. The mutant strains dunceM14, dunceM11, and dunceML appear to be amorphic, because they completely lack the cAMP-specific phosphodiesterase normally present in adult flies. These strains exhibit extremely high levels of cAMP. The mutant strains dunce1, dunce2, and dunceCK are hypomorphic and exhibit reduced levels of the cAMP-specific phosphodiesterase. These strains exhibit less marked increases in cAMP content compared with the three amorphic strains. The dunce2 strain possesses a residual enzyme activity that exhibits anomalous kinetics compared with those of the normal enzyme. The possibility that the dunce locus is the structural gene for the cAMP-specific phosphodiesterase is discussed.


1992 ◽  
Vol 285 (2) ◽  
pp. 563-568 ◽  
Author(s):  
S Goodison ◽  
S Kenna ◽  
S J H Ashcroft

Northern-blot analysis was used to demonstrate that an increase in extracellular glucose concentration increased the content of preproinsulin mRNA 2.3-fold in the beta-cell line HIT T15. A probe for the constitutively expressed glyceraldehyde-3-phosphate dehydrogenase was used as a control. Mannoheptulose blocked this effect of glucose. A stimulatory effect on preproinsulin mRNA levels was also observed in response to mannose and to 4-methyl-2-oxopentanoate. However, galactose and arginine were ineffective. Glucagon, forskolin and dibutyryl cyclic AMP also elicited an increase in HIT-cell preproinsulin mRNA. The ability of the 5′ upstream region of the preproinsulin gene to mediate the effect of glucose and other metabolites on transcription was studied by using a bacterial reporter gene technique. HIT cells were transfected with a plasmid, pOK1, containing the upstream region of the rat insulin-1 gene (-345 to +1) linked to chloramphenicol acetyltransferase (CAT). Co-transfection with a plasmid pRSV beta-gal containing beta-galactosidase driven by the Rous sarcoma virus promoter was used as a control for the efficiency of transfection; expression of CAT activity in transfected HIT cells was normalized by reference to expression of beta-galactosidase. Glucose caused a dose-dependent increase in expression of CAT activity, with a half-maximal effect at 5.5 mM and a maximum response of 4-fold. Mannoheptulose blocked this effect of glucose. Other metabolites (mannose, 4-methyl-2-oxopentanoate and leucine plus glutamine) were also able to increase insulin promoter-driven CAT expression, but galactose and arginine were ineffective. The stimulatory effect of glucose on CAT expression was not blocked by verapamil and was inhibited by increasing extracellular Ca2+ from 0.4 to 5 mM. Both dibutyryl cyclic AMP and forskolin caused an increase in insulin promoter-driven gene expression in the presence of 1 mM-glucose, but neither agent further increased the level of expression occurring in the presence of a maximally stimulating glucose concentration. The phorbol ester phorbol 12-myristate 13-acetate (PMA) also increased insulin promoter-driven CAT expression in the presence of 1 mM-, but not 11 mM-glucose. Staurosporine blocked the stimulatory effect not only of PMA but also of glucose and of dibutyryl cyclic AMP. We conclude that the 5′ upstream region of the insulin gene contains sequences responsible for mediating the stimulatory effect of glucose on insulin-gene transcription.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 4 (6) ◽  
pp. 204-209 ◽  
Author(s):  
Wolfgang Schmid ◽  
Doris Nitsch ◽  
Michael Boshart ◽  
Günther Schütz

Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 121-132
Author(s):  
Zhen Hu ◽  
Yingzi Yue ◽  
Hua Jiang ◽  
Bin Zhang ◽  
Peter W Sherwood ◽  
...  

Abstract Expression of the MAL genes required for maltose fermentation in Saccharomyces cerevisiae is induced by maltose and repressed by glucose. Maltose-inducible regulation requires maltose permease and the MAL-activator protein, a DNA-binding transcription factor encoded by MAL63 and its homologues at the other MAL loci. Previously, we showed that the Mig1 repressor mediates glucose repression of MAL gene expression. Glucose also blocks MAL-activator-mediated maltose induction through a Mig1p-independent mechanism that we refer to as glucose inhibition. Here we report the characterization of this process. Our results indicate that glucose inhibition is also Mig2p independent. Moreover, we show that neither overexpression of the MAL-activator nor elimination of inducer exclusion is sufficient to relieve glucose inhibition, suggesting that glucose acts to inhibit induction by affecting maltose sensing and/or signaling. The glucose inhibition pathway requires HXK2, REG1, and GSF1 and appears to overlap upstream with the glucose repression pathway. The likely target of glucose inhibition is Snf1 protein kinase. Evidence is presented indicating that, in addition to its role in the inactivation of Mig1p, Snf1p is required post-transcriptionally for the synthesis of maltose permease whose function is essential for maltose induction.


2021 ◽  
Vol 7 (11) ◽  
pp. eaba1187
Author(s):  
Rina Baba ◽  
Satoru Matsuda ◽  
Yuuichi Arakawa ◽  
Ryuji Yamada ◽  
Noriko Suzuki ◽  
...  

Persistent epigenetic dysregulation may underlie the pathophysiology of neurodevelopmental disorders, such as autism spectrum disorder (ASD). Here, we show that the inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity normalizes aberrant epigenetic control of gene expression in neurodevelopmental disorders. Maternal exposure to valproate or poly I:C caused sustained dysregulation of gene expression in the brain and ASD-like social and cognitive deficits after birth in rodents. Unexpectedly, a specific inhibitor of LSD1 enzyme activity, 5-((1R,2R)-2-((cyclopropylmethyl)amino)cyclopropyl)-N-(tetrahydro-2H-pyran-4-yl)thiophene-3-carboxamide hydrochloride (TAK-418), almost completely normalized the dysregulated gene expression in the brain and ameliorated some ASD-like behaviors in these models. The genes modulated by TAK-418 were almost completely different across the models and their ages. These results suggest that LSD1 enzyme activity may stabilize the aberrant epigenetic machinery in neurodevelopmental disorders, and the inhibition of LSD1 enzyme activity may be the master key to recover gene expression homeostasis. TAK-418 may benefit patients with neurodevelopmental disorders.


Genetics ◽  
1979 ◽  
Vol 91 (3) ◽  
pp. 521-535
Author(s):  
John A Kiger ◽  
Eric Golanty

ABSTRACT Two cyclic AMP phosphodiesterase enzymes (E.C.3.1.4.17) are present in homogenates of adult Drosophila melanogaster. The two enzymes differ from one another in heat stability, affinity for Mg++, Ca++ activation and molecular weight. They do not differ markedly in their affinities for cyclic AMP, and both exhibit anomalous Michaelis-Menten kinetics. The more heatlabile enzyme is controlled in a dosage-dependent manner by chromomere 3D4 of the X chromosome and is absent in flies that are deficient for chromomere 3D4. Chromomere 3D4 is also necessary for the maintenance of normal cAMP levels, for male fertility, and for normal female fertility and oogenesis. The structural gene(s) for the more heat-stable enzyme is located outside of chromomeres 3C12-3D4. Whether 3D4 contains a structural gene, or a regulatory gene necessary for the presence of the labile enzyme, remains to be determined.


Sign in / Sign up

Export Citation Format

Share Document