camp content
Recently Published Documents


TOTAL DOCUMENTS

322
(FIVE YEARS 18)

H-INDEX

34
(FIVE YEARS 2)

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7066
Author(s):  
Youchao Qi ◽  
Linkai Shi ◽  
Guozhen Duan ◽  
Yonggui Ma ◽  
Peifeng Li

Taurochenodeoxycholic acid (TCDCA) is one of the main components of bile acids (BAs). TCDCA has been reported as a signaling molecule, exerting anti-inflammatory and immunomodulatory functions. However, it is not well known whether those effects are mediated by TGR5. This study aimed to elucidate the interaction between TCDCA and TGR5. To achieve this aim, first, the TGR5 eukaryotic vector was constructed. The expression level of TGR5 in 293T cells was determined by immunofluorescence, real-time quantitative PCR (RT-PCR, qPCR), and Western blot. The luciferase assay, fluorescence microscopy, and enzyme-linked immunosorbent assay (ELISA) were recruited to check the interaction of TCDCA with TGR5. TCDCA treatment in 293T cells resulted in TGR5 internalization coupled with a significant increase in cAMP luciferase expression. Our results demonstrated that TCDCA was able to bind to the TGR5 receptor and activate it. These results provide an excellent potential therapeutic target for TCDCA research. Moreover, these findings also provide theoretical evidence for further TCDCA research.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xinjun Zhao ◽  
Qingmin Chu ◽  
Wei Wu ◽  
Hui Wu ◽  
Song Wang ◽  
...  

We investigated the effects of Shenfu Injection (SFI) on HCN4 activity in bone marrow mesenchymal stem cells (BMSCs). The sample of BMSCs was divided into six groups: a control group, a high-dose SFI group (0.25 ml/ml), a middle-dose SFI group (0.1 ml/ml), a low-dose SFI group (0.05 ml/ml), an adenovirus-encoded control vector group, and an adenovirus-encoded HCN4 group. Cell ultrastructure was observed using a transmission electron microscope. Quantitative reverse transcription PCR (RT-qPCR) was performed to detect HCN4 expression, and HCN4 activity was detected using the whole-cell patch clamp technique. An enzyme-linked immunosorbent assay was performed to detect cAMP content. Application of flow cytometry confirmed that the isolated cells showed BMSC-like phenotypes. Differentiation of BMSCs in both the SFI and the adenovirus-encoding HCN4 groups occurred according to the cellular ultrastructure. Application of the whole-cell patch clamp technique revealed that SFI could activate the inward pacing current of BMSCs in a concentration-dependent manner. The RT-qPCR results showed that HCN4 expression was significantly higher in the high-dose SFI group than in the medium- and low-dose groups, whereas the cAMP content in the overexpressed HCN4 group decreased significantly; this content in the high-dose SFI group increased significantly. In conclusion, SFI promotes HCN4 activity in BMSCs, which could explain its treatment effect when administered to patients with cardiovascular diseases.


mSystems ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Yujie Xiao ◽  
Haozhe Chen ◽  
Liang Nie ◽  
Meina He ◽  
Qi Peng ◽  
...  

ABSTRACT The bacterial second messenger cyclic diguanylate (c-di-GMP) modulates plankton-to-biofilm lifestyle transition of Pseudomonas species through its transcriptional regulatory effector FleQ. FleQ regulates transcription of biofilm- and flagellum-related genes in response to c-di-GMP. Through transcriptomic analysis and FleQ-DNA binding assay, this study identified five new target genes of c-di-GMP/FleQ in P. putida, including PP_0681, PP_0788, PP_4519 (lapE), PP_5222 (cyaA), and PP_5586. Except lapE encoding an outer membrane pore protein and cyaA encoding an adenylate cyclase, the functions of the other three genes encoding hypothetical proteins remain unknown. FleQ and c-di-GMP coordinately inhibit transcription of PP_0788 and cyaA and promote transcription of PP_0681, lapE, and PP_5586. Both in vitro and in vivo assays show that FleQ binds directly to promoters of the five genes. Further analyses confirm that LapE plays a central role of in the secretion of adhesin LapA and that c-di-GMP/FleQ increases lapE transcription, thereby promoting adhesin secretion and biofilm formation. The adenylate cyclase CyaA is responsible for synthesis of another second messenger, cyclic AMP (cAMP). FleQ and c-di-GMP coordinate to decrease the content of cAMP, suggesting that c-di-GMP and FleQ coregulate cAMP by modulating cyaA expression. Overall, this study adds five new members to the c-di-GMP/FleQ-regulated gene family and reveals the role of c-di-GMP/FleQ in LapA secretion and cAMP synthesis regulation in P. putida. IMPORTANCE c-di-GMP/FleQ promotes the plankton-to-biofilm lifestyle transition at the transcriptional level via FleQ in Pseudomonas species. Identification of new target genes directly regulated by c-di-GMP/FleQ helps to broaden the knowledge of c-di-GMP/FleQ-mediated transcriptional regulation. Regulation of lapE by c-di-GMP/FleQ guarantees highly efficient LapA secretion and biofilm formation. The mechanism of negative correlation between c-di-GMP and cAMP in both P. putida and P. aeruginosa remains unknown. Our result concerning transcriptional inhibition of cyaA by c-di-GMP/FleQ reveals the mechanism underlying the decrease of cAMP content by c-di-GMP in P. putida.


Author(s):  
Andrea Olmos‐Ortiz ◽  
Alberto Olivares‐Huerta ◽  
Janice García‐Quiroz ◽  
Teresa Zariñán ◽  
Roberto Chavira ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Miao Zhang ◽  
Yongcai Li ◽  
Tiaolan Wang ◽  
Yang Bi ◽  
Rong Li ◽  
...  

Alternaria alternata, the casual agent of black rot of pear fruit, can sense and respond to the physicochemical cues from the host surface and form infection structures during infection. To evaluate the role of cyclic AMP-dependent protein kinase (cAMP-PKA) signaling in surface sensing of A. alternata, we isolated and functionally characterized the cyclic adenosine monophosphate-dependent protein kinase A catalytic subunit gene (AaPKAc). Gene expression results showed that AaPKAc was strongly expressed during the early stages of appressorium formation on hydrophobic surfaces. Knockout mutants ΔAaPKAc were generated by replacing the target genes via homologous recombination events. We found that intracellular cAMP content increased but PKA content decreased in ΔAaPKAc mutant strain. Appressorium formation and infection hyphae were reduced in the ΔAaPKAc mutant strain, and the ability of the ΔAaPKAc mutant strain to recognize and respond to high hydrophobicity surfaces and different surface waxes was lower than in the wild type (WT) strain. In comparison with the WT strain, the appressorium formation rate of the ΔAaPKAc mutant strain on high hydrophobicity and fruit wax extract surface was reduced by 31.6 and 49.3% 4 h after incubation, respectively. In addition, AaPKAc is required for the hypha growth, biomass, pathogenicity, and toxin production of A. alternata. However, AaPKAc negatively regulated conidia formation, melanin production, and osmotic stress resistance. Collectively, AaPKAc is required for pre-penetration, developmental, physiological, and pathological processes in A. alternata.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 922
Author(s):  
Anne-Sophie Colombe ◽  
Guillaume Pidoux

Under physiological conditions, cAMP signaling plays a key role in the regulation of cardiac function. Activation of this intracellular signaling pathway mirrors cardiomyocyte adaptation to various extracellular stimuli. Extracellular ligand binding to seven-transmembrane receptors (also known as GPCRs) with G proteins and adenylyl cyclases (ACs) modulate the intracellular cAMP content. Subsequently, this second messenger triggers activation of specific intracellular downstream effectors that ensure a proper cellular response. Therefore, it is essential for the cell to keep the cAMP signaling highly regulated in space and time. The temporal regulation depends on the activity of ACs and phosphodiesterases. By scaffolding key components of the cAMP signaling machinery, A-kinase anchoring proteins (AKAPs) coordinate both the spatial and temporal regulation. Myocardial infarction is one of the major causes of death in industrialized countries and is characterized by a prolonged cardiac ischemia. This leads to irreversible cardiomyocyte death and impairs cardiac function. Regardless of its causes, a chronic activation of cardiac cAMP signaling is established to compensate this loss. While this adaptation is primarily beneficial for contractile function, it turns out, in the long run, to be deleterious. This review compiles current knowledge about cardiac cAMP compartmentalization under physiological conditions and post-myocardial infarction when it appears to be profoundly impaired.


2021 ◽  
Author(s):  
Jiahe Qiu ◽  
Yoichi Sato ◽  
Lusi Xu ◽  
Takahiro Miura ◽  
Masahiro Kohzuki ◽  
...  

AbstractIntroductionPolycystic kidney disease (PKD) is a genetic disorder characterized by the progressive enlargement of renal epithelial cysts and renal dysfunction. Previous studies have reported the beneficial effects of chronic exercise on chronic kidney disease. However, the effects of chronic exercise have not been fully examined in PKD patients or models. The effects of chronic exercise on the progression of PKD were investigated in a polycystic kidney (PCK) rat model.MethodsSix-week-old male PCK rats were divided into a sedentary group and an exercise group. The exercise group underwent forced treadmill exercise for 12 weeks (28 m/min, 60 min/day, 5 days/week). After 12 weeks, kidney function and histology were examined, protein expressions were analyzed, and signaling cascades of PKD were examined.ResultsChronic exercise reduced the excretion of urinary protein, liver-type fatty acid-binding protein, plasma creatinine, urea nitrogen, and increased plasma irisin and urinary arginine vasopressin (AVP) excretion. Chronic exercise also slowed renal cyst growth, glomerular damage, and interstitial fibrosis, and led to reduced Ki-67 expression. Chronic exercise had no effect on cAMP content but decreased the renal expression of B-Raf and reduced the phosphorylation of extracellular signal-regulated kinase (ERK), mammalian target of rapamycin (mTOR), and S6.ConclusionChronic exercise slows renal cyst growth and damage in PCK rats, despite increasing AVP, with down-regulation of the cAMP/B-Raf/ERK and mTOR/S6 pathways in the kidney of PCK rats.


2021 ◽  
Author(s):  
He Zhang ◽  
Wenjie Su ◽  
Chunhui Yang ◽  
Xiaolei Tang ◽  
Daian Pan ◽  
...  

Abstract Background: Panax notoginseng (Burk.) F.H. Chen has long been used to stop bleeding for hundreds of years in China. At present, only dencichine and notoginsenoside Ft1 showed the hemostatic effect. Other ingredients from Panax notoginseng need to be further investigated. This study evaluates the hemostatic effect of 20(S)-panaxadiol (PD) and reveals its mechanism. Methods: We performed an in vivo study to measure PD on the hemostatic effect of mouse tail amputation and liver scratch models, and routine blood. Plasma coagulation parameters were measured using a blood analyzer. Platelet aggregation rate and adenosine triphosphate (ATP) release were analyzed by platelet aggregometer. Subsequently, degranulation marker P-selectin (CD62P), PAC-1 (activated GP IIb/IIIa receptor marker), the concentrations of cytosolic Ca2+ ([Ca2+]i) and cyclic adenosine monophosphate (cAMP) were also assessed. Results: PD shorted bleeding time on the mouse tail amputation and liver scratch models and mainly increased blood platelet count in the rats after subcutaneous injection of 4 h. Meanwhile, PD decreased APTT, increased FIB content, and directly induced platelet aggregation. In the absence of Ca2+, PD promoted the increase of [Ca2+]i and ATP, slightly increased CD62P expression and PAC-1 binding of platelets. After the addition of Ca2+, PD treatment markedly promoted platelet activation by releasing ATP level, increasing CD62P expression and PAC-1 binding, and decreasing cAMP level in platelets. Besides, PD increased phosphorylation of phosphoinositide 3-kinase (PI3K), protein kinase B (PKB or Akt), and glycogen synthase kinase 3β (GSK3β) in human platelets. Excitingly, PD-induced changes included platelet aggregation, a decrease of the cAMP content, and the increases of ATP, CD62P and PAC-1, which were significantly reversed by vorapaxar, which showed a similar function as thrombin. Conclusions: PD is an essential hemostatic ingredient in Panax notoginseng for promoting hematopoiesis and thrombopoiesis. PD induces platelet aggregation by affecting calcium signaling and activating PI3K/Akt/GSK3β signaling pathway, which could contribute to the new insight for the treatment of hemorrhagic disease.


2021 ◽  
Vol 17 (3) ◽  
pp. 477-486
Author(s):  
Fashui Hong ◽  
Xiao Ze ◽  
Lingjuan Li ◽  
Yuguan Ze

Nano-titanium dioxide (nano-TiO2) has been shown to inhibit testosterone synthesis in male mice or rats; however, the mechanisms underlying these effects have yet to be elucidated. In this study, we investigated whether the inhibition of testosterone synthesis by nano-TiO2 on Leydig cells (LCs) was related to the dysfunction of the cAMP/CGMP/EGFR/MMP signaling pathway in primary cultures of LCs prepared from rat testis exposed to nano-TiO2. We found that the early apoptotic rate of LCs increased by 4.34 and 4.94 times, respectively, after exposure to 20 g/mL and 40 g/mL nano-TiO2 ; we also found that NO increased by 1.1 and 2.86 times, respectively. ROS increased by times of 0.71, 3.15 and 3.43; RNS increased by 0.62, 1.34 and 1.14 times; and SOD activity decreased by 18.3%, 28.16%, and 67.6%, respectively, when the concentration of nano-TiO2 was 10, 20 and 40 g/mL. These results indicated that nano-TiO2 treatment resulted caused damage to the LCs, including an imbalance of oxidation and antioxidation. Following nano-TiO2 treatment, the cAMP content had decreased by 48%, 48% and 47.6%; cGMP content had decreased by 18.7%, 52.2% and 56.7%; the levels of ATP in the LCs had decreased by 15.15%, 45.75% and 66.67%; the expression of HCGR protein had decreased by 26.7%, 45.07% and 74.64%; the expression of LHR protein had decreased by 18.3%, 28.16% and 67.6%; and the levels of T had decreased by 34.48%, 46.62% and 44.12%. Collectively, our results indicated that the inhibition of testosterone production by nano-TiO2 is related to the dysfunction of the cAMP/CGMP/EGFR/MMP signaling pathway.


2021 ◽  
pp. 1-34
Author(s):  
Hamidie Ronald D Ray ◽  
Tsubasa Shibaguchi ◽  
Tatsuya Yamada ◽  
Rikuhide Koma ◽  
Rie Ishizawa ◽  
...  

Abstract Background: Previous research has suggested that curcumin potentially induces mitochondrial biogenesis in skeletal muscle via increasing cAMP levels. However, the regulatory mechanisms for this phenomenon remain unknown. The purpose of the present study was to clarify the mechanism by which curcumin activates cAMP-related signalling pathways that upregulate mitochondrial biogenesis and respiration in skeletal muscle. Methods: The effect of curcumin treatment (i.p., 100 mg/kg-BW/day for 28 days) on mitochondrial biogenesis was determined in rats. The effects of curcumin and exercise (swimming for 2 h/day for 3 days) on the cAMP signalling pathway were determined in the absence and presence of phosphodiesterase (PDE) or protein kinase A (PKA) inhibitors. Mitochondrial respiration, citrate synthase (CS) activity, cAMP content, and protein expression of cAMP/PKA signalling molecules were analysed. Results: Curcumin administration increased COX-IV protein expression, and CS and complex I activity, consistent with the induction of mitochondrial biogenesis by curcumin. Mitochondrial respiration was not altered by curcumin treatment. Curcumin and PDE inhibition tended to increase cAMP levels with or without exercise. In addition, exercise increased the phosphorylation of PDE4A, whereas curcumin treatment strongly inhibited PDE4A phosphorylation regardless of exercise. Furthermore, curcumin promoted AMPK phosphorylation and PGC-1α deacetylation. Inhibition of PKA abolished the phosphorylation of AMPK. Conclusion: The present results suggest that curcumin increases cAMP levels via inhibition of PDE4A phosphorylation, which induces mitochondrial biogenesis through a cAMP/PKA/AMPK signalling pathway. Our data also suggest the possibility that curcumin utilizes a regulatory mechanism for mitochondrial biogenesis that is distinct from the exercise-induced mechanism in skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document