mal genes
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Margarida Silva ◽  
Ana Pontes ◽  
Ricardo Franco-Duarte ◽  
Pedro Soares ◽  
Jose Paulo Sampaio ◽  
...  

The yeast Torulaspora delbrueckii is gaining importance for biotechnology due to its ability to increase wine sensorial complexity and for enhancing pre-frozen bread dough leavening. However, little is known about its population structure, variation in gene content, or possible domestication routes. Here, we address these issues and update the delimitation of T. delbrueckii along five major clades. Among the three European clades, a basal lineage is associated with the wild arboreal niche, while the two other lineages are linked with anthropic environments, one to wine fermentations and the other to diverse sources including dairy products and bread dough (Mix- Anthropic clade). Using 62 genomes we identified 5629 genes in the pangenome of T. delbrueckii and 270 genes in the cloud genome. A pangenome tree analysis showed that wine strains have a genome composition more similar to European wild arboreal strains than to those of the Mix Anthropic clade, in contradiction with the phylogenetic analysis. An association of gene content and ecology gave further support to the hypothesis that the Mix - Anthropic clade has the most specialized genome content and indicated that some of the exclusive genes were implicated in galactose and maltose utilization. More detailed analyses traced the acquisition of a cluster of GAL genes in strains associated with dairy products and the expansion and functional diversification of MAL genes in strains isolated from bread dough. Contrary to S. cerevisiae, domestication in T. delbrueckii is not primed by alcoholic fermentation and appears to be a recent event.


2008 ◽  
Vol 103 (8) ◽  
pp. 629-637
Author(s):  
Kentaro OGURA ◽  
Sachiko NAKAMURA ◽  
Toshimori KADOKURA ◽  
Atsumi NAKAZATO
Keyword(s):  

Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 121-132
Author(s):  
Zhen Hu ◽  
Yingzi Yue ◽  
Hua Jiang ◽  
Bin Zhang ◽  
Peter W Sherwood ◽  
...  

Abstract Expression of the MAL genes required for maltose fermentation in Saccharomyces cerevisiae is induced by maltose and repressed by glucose. Maltose-inducible regulation requires maltose permease and the MAL-activator protein, a DNA-binding transcription factor encoded by MAL63 and its homologues at the other MAL loci. Previously, we showed that the Mig1 repressor mediates glucose repression of MAL gene expression. Glucose also blocks MAL-activator-mediated maltose induction through a Mig1p-independent mechanism that we refer to as glucose inhibition. Here we report the characterization of this process. Our results indicate that glucose inhibition is also Mig2p independent. Moreover, we show that neither overexpression of the MAL-activator nor elimination of inducer exclusion is sufficient to relieve glucose inhibition, suggesting that glucose acts to inhibit induction by affecting maltose sensing and/or signaling. The glucose inhibition pathway requires HXK2, REG1, and GSF1 and appears to overlap upstream with the glucose repression pathway. The likely target of glucose inhibition is Snf1 protein kinase. Evidence is presented indicating that, in addition to its role in the inactivation of Mig1p, Snf1p is required post-transcriptionally for the synthesis of maltose permease whose function is essential for maltose induction.


Genetics ◽  
1996 ◽  
Vol 142 (1) ◽  
pp. 51-63 ◽  
Author(s):  
Jianfan Wang ◽  
Richard Needleman

Maltose fermenting strains of Saccharomyces cerevisiae have one or more complex loci called MAL. Each locus comprises at least three genes: MALx1 encodes maltose permease, MALx2 encodes maltase, and MALx3 encodes an activator of MALxl and MALx2 (x denotes one of five MAL loci, with x = 1, 2, 3, 4, or 6). The MAL43c allele is constitutive and relatively insensitive to glucose repression. To understand better this unique phenotype of MAL43c, we have isolated several MAL63c constitutive mutants from a MAL6 strain. All constitutive mutants remain glucose repressible, and all have multiple amino acid substitutions in the C-terminal region, now making this region of Mal63cp similar to that of Mal43cp. These changes have been generated by gene conversion, which transfers DNA from the telomeres of chromosome II and chromosome III or XVI to chromosome VIII (MAL6). The removal of a Mig1p binding site from the MAL63c promoter leads to a loss of glucose repression, imitating the phenotype of MAL43c. Conversely, addition of a Mig1p binding site to the promoter of MAL43c converts it to glucose sensitivity. Mig1p modulation of Mal63p and Ma143p expression therefore plays a substantial role in glucose repression of the MAL, genes.


1995 ◽  
Vol 41 (3) ◽  
pp. 257-262
Author(s):  
SOO-YEOL CHUNG ◽  
YONG-LARK CHOI ◽  
MOO-JE CHO ◽  
HAJIME YOSHISUE ◽  
MAKOTO KAWAMUKAI ◽  
...  

1990 ◽  
Vol 10 (7) ◽  
pp. 3797-3800
Author(s):  
B F Ni ◽  
R B Needleman

Maltose fermentation in Saccharomyces species requires the presence of at least one of five unlinked MAL loci: MAL1, MAL2, MAL3, MAL4, and MAL6. Each of these loci consists of a complex of genes involved in maltose metabolism; the complex includes maltase, a maltose permease, and an activator of these genes. At the MAL6 locus, the activator is encoded by the MAL63 gene. While the MAL6 locus has been the subject of numerous studies, the binding sites of the MAL63 activator have not been determined. In this study, we used Escherichia coli extracts containing the MAL63 protein to define the binding sites of the MAL63 protein in the divergently transcribed MAL61-62 promotor. When a DNA fragment containing these sites was placed upstream of a CYC1-lacZ gene, maltose induced beta-galactosidase. These sites therefore constitute an upstream activating sequence for the MAL genes.


1990 ◽  
Vol 10 (7) ◽  
pp. 3797-3800 ◽  
Author(s):  
B F Ni ◽  
R B Needleman

Maltose fermentation in Saccharomyces species requires the presence of at least one of five unlinked MAL loci: MAL1, MAL2, MAL3, MAL4, and MAL6. Each of these loci consists of a complex of genes involved in maltose metabolism; the complex includes maltase, a maltose permease, and an activator of these genes. At the MAL6 locus, the activator is encoded by the MAL63 gene. While the MAL6 locus has been the subject of numerous studies, the binding sites of the MAL63 activator have not been determined. In this study, we used Escherichia coli extracts containing the MAL63 protein to define the binding sites of the MAL63 protein in the divergently transcribed MAL61-62 promotor. When a DNA fragment containing these sites was placed upstream of a CYC1-lacZ gene, maltose induced beta-galactosidase. These sites therefore constitute an upstream activating sequence for the MAL genes.


Sign in / Sign up

Export Citation Format

Share Document