Haplotypes that are mosaic for wild-type and t complex-specific alleles in wild mice.

Genetics ◽  
1989 ◽  
Vol 123 (2) ◽  
pp. 405-415 ◽  
Author(s):  
M A Erhart ◽  
S J Phillips ◽  
F Bonhomme ◽  
P Boursot ◽  
E K Wakeland ◽  
...  

Abstract Two outstanding problems pertaining to the population dynamics and evolution of the t complex in mice concern the frequency of t haplotypes in the wild and the degree to which these haplotypes recombine with their wild-type homologs. To address these problems, the frequency and distribution of several t complex-associated restriction fragment variants in wild mice were estimated. Sixty-four versions of chromosome 17 from wild-derived Mus musculus musculus and Mus musculus domesticus were examined with DNA probes for six loci within the t complex that exhibit restriction fragment variation. All six probes detect variants that have heretofore been found exclusively associated with the t complex. Haplotype analysis of wild-derived chromosomes revealed a high frequency (45.3%) of "mosaic" haplotypes with a mixture of t-specific and wild-type variants and only one haplotype with t-specific variants at all six loci. When 12 well-characterized t haplotypes isolated from diverse geographic regions were analyzed, only three had a complete set of t-specific restriction fragments for the six loci examined. The preponderance of mosaic haplotypes in both groups of mice can be explained by any one of the following hypotheses: genetic recombination between t haplotypes and their wild-type homologs, the persistence in wild populations of haplotypes that have descended from ancestral partial t haplotypes, or that the restriction fragment variants fixed in the ancestral t haplotype were also fixed in some wild-type haplotypes. There is evidence to support all three of these hypotheses in our data. The allelic composition of some mosaic haplotypes indicates that they may have been formed by segmental recombination, either double crossing over or gene conversion, rather than by simple single crossovers. The occurrence of indistinguishable mosaic haplotypes in both M. m. musculus and M. m. domesticus suggests that these haplotypes are ancestral rather than recently derived.

Genetics ◽  
1988 ◽  
Vol 119 (1) ◽  
pp. 157-160
Author(s):  
F Figueroa ◽  
E Neufeld ◽  
U Ritte ◽  
J Klein

Abstract Lehrach and his coworkers have isolated a series of DNA probes that specifically hybridize with different regions of mouse chromosome 17 within the t complex. The probes display restriction fragment length polymorphisms, RFLPs, which are specific for the t haplotypes in all laboratory mouse strains tested thus far. Some of these probes have been used to test wild mice populations for these t-associated DNA forms. It is demonstrated that populations from Germany, Switzerland, Italy, Greece, Yugoslavia, Australia, Costa Rica, and Venezuela contain chromosomes in which all the tested DNA loci display the t-specific polymorphisms. The frequency of mice carrying these chromosomes is as high as 31%. Wild mice from Israel and Spain, on the other hand, carry chromosomes displaying t-specific DNA forms only at one or two of the probed loci, while the other loci carry the wild-type (+) forms. These chromosomes thus resemble the partial t haplotypes known from the study of laboratory mice. One possible interpretation of these findings is that these DNA polymorphisms contributed to the assembly of the complete t haplotypes and that these haplotypes may have originated in the Middle East.


Genetics ◽  
1987 ◽  
Vol 117 (3) ◽  
pp. 533-541
Author(s):  
Joseph H Nadeau ◽  
Sandra J Phillips

ABSTRACT Pim-1, a putative oncogene involved in T-cell lymphomagenesis, was mapped between the pseudoalpha globin gene Hba-4ps and the alpha-crystallin gene Crya-1 on mouse chromosome 17 and therefore within the t complex. Pim-1 restriction fragment variants were identified among t haplotypes. Analysis of restriction fragment sizes obtained with 12 endonucleases demonstrated that the Pim-1 genes in some t haplotypes were indistinguishable from the sizes for the Pim-1b allele in BALB/c inbred mice. There are now three genes, Pim-1, Crya-1 and H-2 I-E, that vary among independently derived t haplotypes and that have indistinguishable alleles in t haplotypes and inbred strains. These genes are closely linked within the distal inversion of the t complex. Because it is unlikely that these variants arose independently in t haplotypes and their wild-type homologues, we propose that an exchange of chromosomal segments, probably through double crossingover, was responsible for indistinguishable Pim-1 genes shared by certain t haplotypes and their wild-type homologues. There was, however, no apparent association between variant alleles of these three genes among t haplotypes as would be expected if a single exchange introduced these alleles into t haplotypes. If these variant alleles can be shown to be identical to the wild-type allele, then lack of association suggests that multiple exchanges have occurred during the evolution of the t complex.


1986 ◽  
Vol 48 (3) ◽  
pp. 191-197 ◽  
Author(s):  
F. Vanlerberghe ◽  
B. Dod ◽  
P. Boursot ◽  
M. Bellis ◽  
F. Bonhomme

SummaryA cloned Y-specific sequence (Bishop et al. 1985) was used as a diagnostic probe to distinguish between Mus musculus domesticus and Mus musculus musculusY-chromosomes. Analysis of the RFLPs obtained with genomic DNA isolated from wild mice caught along the contact zone between M. m. domesticus and M. m. musculus in Bulgaria and Denmark showed that the Y-chromosome flow between the two semi-species is very limited. The degree of Y-chromosome penetration was compared with that of seven diagnostic autosomal loci and the mitochondrial DNA. Breeding experiments showed that the lack of Y-chromosome introgression from one semispecies to the other was not due to a major hybrid breakdown. The results suggest that the disruption of differentiated co-adapted gene systems could play a role in limiting Y-introgression.


Genetics ◽  
1990 ◽  
Vol 126 (4) ◽  
pp. 1103-1114 ◽  
Author(s):  
C A Howard ◽  
G R Gummere ◽  
M F Lyon ◽  
D Bennett ◽  
K Artzt

Abstract The t-complex is located on the proximal third of chromosome 17 in the house mouse. Naturally occurring variant forms of the t-complex, known as complete t-haplotypes, are found in wild mouse populations. The t-haplotypes contain at least four nonoverlapping inversions that suppress recombination with the wild-type chromosome, and lock into strong linkage disequilibrium loci affecting normal transmission of the chromosome, male gametogenesis and embryonic development. Partial t-haplotypes derived through rare recombination between t-haplotypes and wild-type homologs have been critical in the analysis of these properties. Utilizing two new DNA probes. Au3 and Au9, and several previously described probes, we have analyzed the genetic structure of several partial t-haplotypes that have arisen in our laboratory, as well as several wild-type chromosomes deleted for loci in this region. With this approach we have been able to further our understanding of the structural and dynamic characteristics of the proximal region of the t-complex. Specifically, we have localized the D17Tul locus as most proximal known in t-haplotypes, achieved a better structural analysis of the partial t-haplotype t6, and defined the structure and lethal gene content of partial t-haplotypes derived from the lethal tw73 haplotype.


Virology ◽  
2018 ◽  
Vol 521 ◽  
pp. 92-98 ◽  
Author(s):  
Dagmar Čížková ◽  
Stuart J.E. Baird ◽  
Jana Těšíková ◽  
Sebastian Voigt ◽  
Ďureje Ľudovít ◽  
...  

2020 ◽  
Vol 14 (10) ◽  
pp. 2367-2380
Author(s):  
Meriem Belheouane ◽  
Marie Vallier ◽  
Aleksa Čepić ◽  
Cecilia J. Chung ◽  
Saleh Ibrahim ◽  
...  

Abstract The house mouse is a key model organism in skin research including host–microbiota interactions, yet little is known about the skin microbiota of free-living mice. It is similarly unclear how closely laboratory mice, which typically live under exceptionally hygienic conditions, resemble the ancestral state of microbial variation in the wild. In this study, we sampled an area spanning 270 km2 in south-west France and collected 203 wild Mus musculus domesticus. We profiled the ear skin microbiota on standing and active communities (DNA-based and RNA-based 16 rRNA gene sequencing, respectively), and compared multiple community aspects between wild-caught and laboratory-reared mice kept in distinct facilities. Compared to lab mice, we reveal the skin microbiota of wild mice on the one hand to be unique in their composition within the Staphylococcus genus, with a majority of sequences most closely matching known novobiocin-resistant species, and display evidence of a rare biosphere. On the other hand, despite drastic disparities between natural and laboratory environments, we find that shared taxa nonetheless make up the majority of the core skin microbiota of both wild- and laboratory skin communities, suggesting that mammalian skin is a highly specialized habitat capable of strong selection from available species pools. Finally, the influence of environmental factors suggests RNA-based profiling as a preferred method to reduce environmental noise.


Sign in / Sign up

Export Citation Format

Share Document