rare biosphere
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 42)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Tianjiao Dai ◽  
Donghui Wen ◽  
Colin T. Bates ◽  
Linwei Wu ◽  
Xue Guo ◽  
...  

AbstractNutrient scarcity is pervasive for natural microbial communities, affecting species reproduction and co-existence. However, it remains unclear whether there are general rules of how microbial species abundances are shaped by biotic and abiotic factors. Here we show that the ribosomal RNA gene operon (rrn) copy number, a genomic trait related to bacterial growth rate and nutrient demand, decreases from the abundant to the rare biosphere in the nutrient-rich coastal sediment but exhibits the opposite pattern in the nutrient-scarce pelagic zone of the global ocean. Both patterns are underlain by positive correlations between community-level rrn copy number and nutrients. Furthermore, inter-species co-exclusion inferred by negative network associations is observed more in coastal sediment than in ocean water samples. Nutrient manipulation experiments yield effects of nutrient availability on rrn copy numbers and network associations that are consistent with our field observations. Based on these results, we propose a “hunger games” hypothesis to define microbial species abundance rules using the rrn copy number, ecological interaction, and nutrient availability.


2021 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Anastasia A. Ivanova ◽  
Igor Y. Oshkin ◽  
Olga V. Danilova ◽  
Dmitriy A. Philippov ◽  
Nikolai V. Ravin ◽  
...  

Rokubacteria is a phylogenetic clade of as-yet-uncultivated prokaryotes, which are detected in diverse terrestrial habitats and are commonly addressed as members of the rare biosphere. This clade was originally described as a candidate phylum; however, based on the results of comparative genome analysis, was later defined as the order-level lineage, Rokubacteriales, within the phylum Methylomirabilota. The physiology and lifestyles of these bacteria are poorly understood. A dataset of 16S rRNA gene reads retrieved from four boreal raised bogs and six eutrophic fens was examined for the presence of the Rokubacteriales; the latter were detected exclusively in fens. Their relative abundance varied between 0.2 and 4% of all bacteria and was positively correlated with pH, total nitrogen content, and availability of Ca and Mg. To test an earlier published hypothesis regarding the presence of methanotrophic capabilities in Rokubacteria, peat samples were incubated with 10% methane for four weeks. No response to methane availability was detected for the Rokubacteriales, while clear a increase in relative abundance was observed for the conventional Methylococcales methanotrophs. The search for methane monooxygenase encoding genes in 60 currently available Rokubacteriales metagenomes yielded negative results, although copper-containing monooxygenases were encoded by some members of this order. This study suggests that peat-inhabiting Rokubacteriales are neutrophilic non-methanotrophic bacteria that colonize nitrogen-rich wetlands.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Sophie Marre ◽  
Cyrielle Gasc ◽  
Camille Forest ◽  
Yacine Lebbaoui ◽  
Pascale Mosoni ◽  
...  

Targeting small parts of the 16S rDNA phylogenetic marker by metabarcoding reveals microorganisms of interest but cannot achieve a taxonomic resolution at the species level, precluding further precise characterizations. To identify species behind operational taxonomic units (OTUs) of interest, even in the rare biosphere, we developed an innovative strategy using gene capture by hybridization. From three OTU sequences detected upon polyphenol supplementation and belonging to the rare biosphere of the human gut microbiota, we revealed 59 nearly full-length 16S rRNA genes, highlighting high bacterial diversity hidden behind OTUs while evidencing novel taxa. Inside each OTU, revealed 16S rDNA sequences could be highly distant from each other with similarities down to 85 %. We identified one new family belonging to the order Clostridiales , 39 new genera and 52 novel species. Related bacteria potentially involved in polyphenol degradation have also been identified through genome mining and our results suggest that the human gut microbiota could be much more diverse than previously thought.


2021 ◽  
Vol 9 (11) ◽  
pp. 2377
Author(s):  
Panagiotis Papadakis ◽  
Spyros Konteles ◽  
Anthimia Batrinou ◽  
Sotiris Ouzounis ◽  
Theofania Tsironi ◽  
...  

Background: The identification of bacterial species in fermented PDO (protected designation of origin) cheese is important since they contribute significantly to the final organoleptic properties, the ripening process, the shelf life, the safety and the overall quality of cheese. Methods: Ten commercial PDO feta cheeses from two geographic regions of Greece, Epirus and Thessaly, were analyzed by 16S metagenomic analysis. Results: The biodiversity of all the tested feta cheese samples consisted of five phyla, 17 families, 38 genera and 59 bacterial species. The dominant phylum identified was Firmicutes (49% of the species), followed by Proteobacteria (39% of the species), Bacteroidetes (7% of the species), Actinobacteria (4% of the species) and Tenericutes (1% of the species). Streptococcaceae and Lactobacillaceae were the most abundant families, in which starter cultures of lactic acid bacteria (LAB) belonged, but also 21 nonstarter lactic acid bacteria (NSLAB) were identified. Both geographical areas showed a distinctive microbiota fingerprint, which was ultimately overlapped by the application of starter cultures. In the rare biosphere of the feta cheese, Zobellella taiwanensis and Vibrio diazotrophicus, two Gram-negative bacteria which were not previously reported in dairy samples, were identified. Conclusions: The application of high-throughput DNA sequencing may provide a detailed microbial profile of commercial feta cheese produced with pasteurized milk.


2021 ◽  
Vol 53 ◽  
pp. 101090
Author(s):  
Chunbo Dong ◽  
Zhiyuan Zhang ◽  
Qiuyu Shao ◽  
Ting Yao ◽  
Zongqi Liang ◽  
...  

2021 ◽  
Vol 129 ◽  
pp. 107981
Author(s):  
Guozhuang Zhang ◽  
Guangfei Wei ◽  
Fugang Wei ◽  
Zhongjian Chen ◽  
Mingjun He ◽  
...  

mSystems ◽  
2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Alexa M. Nicolas ◽  
Alexander L. Jaffe ◽  
Erin E. Nuccio ◽  
Michiko E. Taga ◽  
Mary K. Firestone ◽  
...  

Here, we investigated overlooked microbes in soil, candidate phyla radiation (CPR) bacteria and Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota (DPANN) archaea, by size fractionating small particles from soil, an approach typically used for the recovery of viral metagenomes. Concentration of these small cells (<0.2 μm) allowed us to identify these organisms as part of the rare soil biosphere and to sample genomes that were absent from non-size-fractionated metagenomes.


mSystems ◽  
2021 ◽  
Author(s):  
Jimmy H. W. Saw

Microbial communities are frequently numerically dominated by just a few species. Often, the long “tail” of the rank-abundance plots of microbial communities constitutes the so-called “rare biosphere,” microorganisms that are highly diverse but are typically found in low abundance in these communities.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aileen Ziegelhöfer ◽  
Katharina Kujala

Arsenic contamination in water by natural causes or industrial activities is a major environmental concern, and treatment of contaminated waters is needed to protect water resources and minimize the risk for human health. In mining environments, treatment peatlands are used in the polishing phase of water treatment to remove arsenic (among other contaminants), and peat microorganisms play a crucial role in arsenic removal. The present study assessed culture-independent diversity obtained through metagenomic and metatranscriptomic sequencing and culture-dependent diversity obtained by isolating psychrotolerant arsenic-tolerant, arsenite-oxidizing, and arsenate-respiring microorganisms from a peatland treating mine effluent waters of a gold mine in Finnish Lapland using a dilution-to-extinction technique. Low diversity enrichments obtained after several transfers were dominated by the genera Pseudomonas, Polaromonas, Aeromonas, Brevundimonas, Ancylobacter, and Rhodoferax. Even though maximal growth and physiological activity (i.e., arsenite oxidation or arsenate reduction) were observed at temperatures between 20 and 28°C, most enrichments also showed substantial growth/activity at 2–5°C, indicating the successful enrichments of psychrotolerant microorganisms. After additional purification, eight arsenic-tolerant, five arsenite-oxidizing, and three arsenate-respiring strains were obtained in pure culture and identified as Pseudomonas, Rhodococcus, Microbacterium, and Cadophora. Some of the enriched and isolated genera are not known to metabolize arsenic, and valuable insights on arsenic turnover pathways may be gained by their further characterization. Comparison with phylogenetic and functional data from the metagenome indicated that the enriched and isolated strains did not belong to the most abundant genera, indicating that culture-dependent and -independent methods capture different fractions of the microbial community involved in arsenic turnover. Rare biosphere microorganisms that are present in low abundance often play an important role in ecosystem functioning, and the enriched/isolated strains might thus contribute substantially to arsenic turnover in the treatment peatland. Psychrotolerant pure cultures of arsenic-metabolizing microorganisms from peatlands are needed to close the knowledge gaps pertaining to microbial arsenic turnover in peatlands located in cold climate regions, and the isolates and enrichments obtained in this study are a good starting point to establish model systems. Improved understanding of their metabolism could moreover lead to their use in biotechnological applications intended for bioremediation of arsenic-contaminated waters.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nan Zhang ◽  
Chunling Liang ◽  
Xiangjun Liu ◽  
Zhiyuan Yao ◽  
David Z. Zhu ◽  
...  

The release of Escherichia coli (E. coli) O157:H7 has been widely found in various environments, but little is known about the probable influence of the transient E. coli O157:H7 invasion on the native microbial community. Here, we investigated the temporal response of two bacterial biospheres (abundant and rare) of two marsh sediments against E. coli O157:H7 during a 60-day incubation. The diversity of both biospheres showed no evident response to O157:H7 invasion. Temporal factor exhibited greater effects on bacterial variation than O157:H7 invasion. We found that O157:H7 invasion led to an increase in the niche breadth of the bacterial community while decreasing the efficiency of bacterial interaction of the abundant taxa. Moreover, the rare biosphere exhibited enhanced stability against O157:H7 invasion compared with the abundant biosphere, acting as the backbone in resisting external disturbance. Furthermore, each subcommunity assembly showed different randomness levels. The stochastic events were relatively more important in constraining the abundant taxa assembly after invasion. Collectively, E. coli O157:H7 exhibited diverse tangible impact on both biospheres, which unearthed differential responses of abundant and rare biosphere against transient microbial invasion.


Sign in / Sign up

Export Citation Format

Share Document