Transgene Coplacement and High Efficiency Site-Specific Recombination With the Cre/loxP System in Drosophila

Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 715-726 ◽  
Author(s):  
Mark L Siegal ◽  
Daniel L Hartl

Abstract Studies of gene function and regulation in transgenic Drosophila are often compromised by the possibility of genomic position effects on gene expression. We have developed a method, called transgene coplacement, in which any two sequences can be positioned at exactly the same site and orientation in the genome. Transgene coplacement makes use of the bacteriophage P1 system of Cre/loxP site-specific recombination, which we have introduced into Drosophila. In the presence of a cre transgene driven by a dual hsp70-Mosl promoter, a white reporter gene flanked by loxP sites is excised with virtually 100% efficiency both in somatic cells and in germ cells. A strong maternal effect, resulting from Cre recombinase present in the oocyte, is observed as white or mosaic eye color in F1 progeny. Excision in germ cells of the F1 yields a strong grand-maternal effect, observed as a highly skewed ratio of eye-color phenotypes in the F2 generation. The excision reactions of Cre/loxP and the related FLP/FRT system are used to create Drosophila lines in which transgenes are at exactly allelic sites in homologous chromosomes.


2021 ◽  
Vol 7 (11) ◽  
pp. 961
Author(s):  
Virginia Casado-del Castillo ◽  
Andrew P. MacCabe ◽  
Margarita Orejas

Protoplast transformation for the introduction of recombinant DNA into Aspergillus nidulans is technically demanding and dependant on the availability and batch variability of commercial enzyme preparations. Given the success of Agrobacterium tumefaciens-mediated transformation (ATMT) in diverse pathogenic fungi, we have adapted this method to facilitate transformation of A. nidulans. Using suitably engineered binary vectors, gene-targeted ATMT of A. nidulans non-homologous end-joining (NHEJ) mutant conidia has been carried out for the first time by complementation of a nutritional requirement (uridine/uracil auxotrophy). Site-specific integration in the ΔnkuA host genome occurred at high efficiency. Unlike other transformation techniques, however, cross-feeding of certain nutritional requirements from the bacterium to the fungus was found to occur, thus limiting the choice of auxotrophies available for ATMT. In complementation tests and also for comparative purposes, integration of recombinant cassettes at a specific locus could provide a means to reduce the influence of position effects (chromatin structure) on transgene expression. In this regard, targeted disruption of the wA locus permitted visual identification of transformants carrying site-specific integration events by conidial colour (white), even when auxotrophy selection was compromised due to cross-feeding. The protocol described offers an attractive alternative to the protoplast procedure for obtaining locus-targeted A. nidulans transformants.





PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e66597 ◽  
Author(s):  
Teruhiro Okuyama ◽  
Yasuko Isoe ◽  
Masahito Hoki ◽  
Yuji Suehiro ◽  
Genki Yamagishi ◽  
...  


1981 ◽  
Vol 150 (4) ◽  
pp. 603-608 ◽  
Author(s):  
Nat Sternberg


1985 ◽  
Vol 184 (2) ◽  
pp. 211-220 ◽  
Author(s):  
Kenneth Abremski ◽  
Ronald Hoess


Sign in / Sign up

Export Citation Format

Share Document