scholarly journals The Causes of Synonymous Rate Variation in the Rodent Genome: Can Substitution Rates Be Used to Estimate the Sex Bias in Mutation Rate?

Genetics ◽  
1999 ◽  
Vol 152 (2) ◽  
pp. 661-673 ◽  
Author(s):  
Nick G C Smith ◽  
Laurence D Hurst

Abstract Miyata et al. have suggested that the male-to-female mutation rate ratio (α) can be estimated by comparing the neutral substitution rates of X-linked (X), Y-linked (Y), and autosomal (A) genes. Rodent silent site X/A comparisons provide very different estimates from X/Y comparisons. We examine three explanations for this discrepancy: (1) statistical biases and artifacts, (2) nonneutral evolution, and (3) differences in mutation rate per germline replication. By estimating errors and using a variety of methodologies, we tentatively reject explanation 1. Our analyses of patterns of codon usage, synonymous rates, and nonsynonymous rates suggest that silent sites in rodents are evolving neutrally, and we can therefore reject explanation 2. We find both base composition and methylation differences between the different sets of chromosomes, a result consistent with explanation 3, but these differences do not appear to explain the observed discrepancies in estimates of α. Our finding of significantly low synonymous substitution rates in genomically imprinted genes suggests a link between hemizygous expression and an adaptive reduction in the mutation rate, which is consistent with explanation 3. Therefore our results provide circumstantial evidence in favor of the hypothesis that the discrepancies in estimates of α are due to differences in the mutation rate per germline replication between different parts of the genome. This explanation violates a critical assumption of the method of Miyata et al., and hence we suggest that estimates of α, obtained using this method, need to be treated with caution.

Genetics ◽  
1997 ◽  
Vol 146 (1) ◽  
pp. 393-399 ◽  
Author(s):  
Spencer V Muse ◽  
Brandon S Gaut

Even when several genetic loci are used in molecular evolutionary studies, each locus is typically analyzed independently of the others. This type of approach makes it difficult to study mechanisms and processes that affect multiple genes. In this work we develop a statistical approach for the joint analysis of two or more loci. The tests we propose examine whether or not nucleotide substitution rates across evolutionary lineages have the same relative proportions at two loci. Theses procedures are applied to 33 genes from the chloroplast genomes of rice, tobacco, pine, and liverwort. With the exception of five clearly distinct loci, we find that synonymous substitution rates tend to change proportionally across genes. We interpret these results to be consistent with a “lineage effect” acting on the entire chloroplast genome. In contrast, nonsynonymous rates do not change proportionally across genes, suggesting that locus-specific evolutionary effects dominate patterns of nonsynonymous substitution.


2010 ◽  
Vol 277 (1700) ◽  
pp. 3587-3592 ◽  
Author(s):  
Soo Hyung Eo ◽  
J. Andrew DeWoody

Rates of biological diversification should ultimately correspond to rates of genome evolution. Recent studies have compared diversification rates with phylogenetic branch lengths, but incomplete phylogenies hamper such analyses for many taxa. Herein, we use pairwise comparisons of confamilial sauropsid (bird and reptile) mitochondrial DNA (mtDNA) genome sequences to estimate substitution rates. These molecular evolutionary rates are considered in light of the age and species richness of each taxonomic family, using a random-walk speciation–extinction process to estimate rates of diversification. We find the molecular clock ticks at disparate rates in different families and at different genes. For example, evolutionary rates are relatively fast in snakes and lizards, intermediate in crocodilians and slow in turtles and birds. There was also rate variation across genes, where non-synonymous substitution rates were fastest at ATP8 and slowest at CO 3. Family-by-gene interactions were significant, indicating that local clocks vary substantially among sauropsids. Most importantly, we find evidence that mitochondrial genome evolutionary rates are positively correlated with speciation rates and with contemporary species richness. Nuclear sequences are poorly represented among reptiles, but the correlation between rates of molecular evolution and species diversification also extends to 18 avian nuclear genes we tested. Thus, the nuclear data buttress our mtDNA findings.


2007 ◽  
Vol 7 (1) ◽  
pp. 135 ◽  
Author(s):  
Jeffrey P Mower ◽  
Pascal Touzet ◽  
Julie S Gummow ◽  
Lynda F Delph ◽  
Jeffrey D Palmer

Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1299-1308 ◽  
Author(s):  
Joseph P Bielawski ◽  
Katherine A Dunn ◽  
Ziheng Yang

Abstract Rates and patterns of synonymous and nonsynonymous substitutions have important implications for the origin and maintenance of mammalian isochores and the effectiveness of selection at synonymous sites. Previous studies of mammalian nuclear genes largely employed approximate methods to estimate rates of nonsynonymous and synonymous substitutions. Because these methods did not account for major features of DNA sequence evolution such as transition/transversion rate bias and unequal codon usage, they might not have produced reliable results. To evaluate the impact of the estimation method, we analyzed a sample of 82 nuclear genes from the mammalian orders Artiodactyla, Primates, and Rodentia using both approximate and maximum-likelihood methods. Maximum-likelihood analysis indicated that synonymous substitution rates were positively correlated with GC content at the third codon positions, but independent of nonsynonymous substitution rates. Approximate methods, however, indicated that synonymous substitution rates were independent of GC content at the third codon positions, but were positively correlated with nonsynonymous rates. Failure to properly account for transition/transversion rate bias and unequal codon usage appears to have caused substantial biases in approximate estimates of substitution rates.


Sign in / Sign up

Export Citation Format

Share Document