mammalian genes
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 21)

H-INDEX

40
(FIVE YEARS 2)

2021 ◽  
Vol 8 ◽  
Author(s):  
Katherine Dwyer ◽  
Neha Agarwal ◽  
Lori Pile ◽  
Athar Ansari

Introns impact several vital aspects of eukaryotic organisms like proteomic plasticity, genomic stability, stress response and gene expression. A role for introns in the regulation of gene expression at the level of transcription has been known for more than thirty years. The molecular basis underlying the phenomenon, however, is still not entirely clear. An important clue came from studies performed in budding yeast that indicate that the presence of an intron within a gene results in formation of a multi-looped gene architecture. When looping is defective, these interactions are abolished, and there is no enhancement of transcription despite normal splicing. In this review, we highlight several potential mechanisms through which looping interactions may enhance transcription. The promoter-5′ splice site interaction can facilitate initiation of transcription, the terminator-3′ splice site interaction can enable efficient termination of transcription, while the promoter-terminator interaction can enhance promoter directionality and expedite reinitiation of transcription. Like yeast, mammalian genes also exhibit an intragenic interaction of the promoter with the gene body, especially exons. Such promoter-exon interactions may be responsible for splicing-dependent transcriptional regulation. Thus, the splicing-facilitated changes in gene architecture may play a critical role in regulation of transcription in yeast as well as in higher eukaryotes.


Author(s):  
Alexander Suvorov

Rapid development of high-throughput omics technologies generates an increasing interests in algorithms for cutoff point identification. Existing cutoff methods and tools identify cutoff points based on association of continuous variables with another variable, such as phenotype, disease state or treatment group. These approaches are not applicable for descriptive studies in which continuous variables are reported without known association with any biologically meaningful variables. The most common shape of the ranked distribution of continuous variables in high-throughput descriptive studies corresponds to a biphasic exponential/super-exponential curve, where the first phase includes big number of variables with values slowly growing with rank and the second phase includes smaller number of variables rapidly growing with rank. This study describes an easy algorithm to identify the boundary between these phases to be used as a cutoff point. The major assumption of that approach is that small number of variables with high values dominate biological system and determine its major processes and functions. This approach was tested on three different datasets: genes in the human cerebral cortex, mammalian genes sensitive to chemical exposures, and proteins expressed in human heart. In every case, the described cutoff identification method produced shortlists of variables (genes, proteins) highly relevant for dominant functions/pathways of the analyzed biological systems. Thus, our described method for cutoff identification may be used to prioritize variables for a focused functional analysis, in situations where other methods of dichotomization of data are inaccessible.


2021 ◽  
Vol 22 (7) ◽  
pp. 3749
Author(s):  
Yuko Ito ◽  
Kohei Taniguchi ◽  
Yuki Kuranaga ◽  
Nabil Eid ◽  
Yosuke Inomata ◽  
...  

MicroRNAs (miRNAs) are small RNAs present in extracellular vesicles (EVs) that, when transferred to a target cell, affect its biological functions. Plant miRNAs regulate the expression of certain mammalian genes. Here, we characterized EVs in fruit and vegetable juice, and their miRNA cargo, and investigated whether such miRNA-containing EVs could be taken up by mammalian enterocytes in vitro. Using filtration and ultra-centrifugation methods, EVs were purified from commercially available and manually squeezed plant juice. EV morphological features and subcellular localization were analyzed using the NanoSight tracking system and electron microscopy. Plant EV miRNA levels were evaluated using quantitative reverse transcription PCR. For the in vitro EV uptake experiments, rat intestinal epithelial cells (IEC6) were used. Plant EVs shared morphological features with mammalian EVs and contained miR156a-5p, miR166a-3p, and miR168a-5p. EVs were present in the cell sap-filled central vacuoles and were taken up by IEC6 cells. Edible plant cells produce EVs that contain various miRNAs and release them into the central vacuole. The exogenous plant EVs are taken up by mammalian enterocytes in vitro. These findings suggest the possibility that exogenous plant miRNAs carried by EVs can be absorbed via the gastrointestinal tract.


2021 ◽  
Author(s):  
Alexander Lachmann ◽  
Kaeli Rizzo ◽  
Alon Bartal ◽  
Minji Jeon ◽  
Daniel J. B. Clarke ◽  
...  

Gene co-expression correlations from mRNA-sequencing (RNA-seq) can be used to predict gene function based on the covariance structure that exists within such data. In the past, we showed that RNA-seq co-expression data is highly predictive of gene function and protein-protein interactions. We demonstrated that the performance of such predictions is dependent on the source of the gene expression data. Furthermore, since genes function in different cellular contexts, predictions derived from tissue-specific gene co-expression data outperform predictions derived from cross-tissue gene co-expression data. However, the identification of the optimal tissue type to maximize gene function predictions for all mammalian genes is not trivial. Here we introduce and validate an approach we term Partitioning RNA-seq data Into Segments for Massive co-EXpression-based gene function Predictions (PrismExp), for improved gene function prediction based on RNA-seq co-expression data. With coexpression data from ARCHS4, we apply PrismExp to predict a wide variety of gene functions, including pathway membership, phenotypic associations, and protein-protein interactions. PrismExp outperforms the cross-tissue co-expression correlation matrix approach on all tested domains. Hence, PrismExp can enhance machine learning methods that utilize RNA-seq coexpression correlations to impute knowledge about understudied genes and proteins.


Science ◽  
2021 ◽  
pp. eabb1723
Author(s):  
Kunal Bhutani ◽  
Katherine Stansifer ◽  
Simina Ticau ◽  
Lazar Bojic ◽  
Alexandra-Chloé Villani ◽  
...  

Sperm are haploid, but must be functionally equivalent to distribute alleles equally among progeny. Accordingly, gene products are shared through spermatid cytoplasmic bridges which erase phenotypic differences between individual haploid sperm. Here, we show that a large class of mammalian genes are not completely shared across these bridges. We term these genes “genoinformative markers” (GIMs) and show that a subset can act as selfish genetic elements that spread alleles unevenly through murine, bovine, and human populations. We identify evolutionary pressure to avoid conflict between sperm and somatic function as GIMs are enriched for testis-specific gene expression, paralogs, and isoforms. Therefore, GIMs and sperm-level natural selection may help explain why testis gene expression patterns are an outlier relative to all other tissues.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tianxiong Yu ◽  
Kaili Fan ◽  
Deniz M. Özata ◽  
Gen Zhang ◽  
Yu Fu ◽  
...  

AbstractIn the male germ cells of placental mammals, 26–30-nt-long PIWI-interacting RNAs (piRNAs) emerge when spermatocytes enter the pachytene phase of meiosis. In mice, pachytene piRNAs derive from ~100 discrete autosomal loci that produce canonical RNA polymerase II transcripts. These piRNA clusters bear 5′ caps and 3′ poly(A) tails, and often contain introns that are removed before nuclear export and processing into piRNAs. What marks pachytene piRNA clusters to produce piRNAs, and what confines their expression to the germline? We report that an unusually long first exon (≥ 10 kb) or a long, unspliced transcript correlates with germline-specific transcription and piRNA production. Our integrative analysis of transcriptome, piRNA, and epigenome datasets across multiple species reveals that a long first exon is an evolutionarily conserved feature of pachytene piRNA clusters. Furthermore, a highly methylated promoter, often containing a low or intermediate level of CG dinucleotides, correlates with germline expression and somatic silencing of pachytene piRNA clusters. Pachytene piRNA precursor transcripts bind THOC1 and THOC2, THO complex subunits known to promote transcriptional elongation and mRNA nuclear export. Together, these features may explain why the major sources of pachytene piRNA clusters specifically generate these unique small RNAs in the male germline of placental mammals.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Iromi Wanigasuriya ◽  
Quentin Gouil ◽  
Sarah A Kinkel ◽  
Andrés Tapia del Fierro ◽  
Tamara Beck ◽  
...  

Genomic imprinting establishes parental allele-biased expression of a suite of mammalian genes based on parent-of-origin specific epigenetic marks. These marks are under the control of maternal effect proteins supplied in the oocyte. Here we report epigenetic repressor Smchd1 as a novel maternal effect gene that regulates the imprinted expression of ten genes in mice. We also found zygotic SMCHD1 had a dose-dependent effect on the imprinted expression of seven genes. Together, zygotic and maternal SMCHD1 regulate three classic imprinted clusters and eight other genes, including non-canonical imprinted genes. Interestingly, the loss of maternal SMCHD1 does not alter germline DNA methylation imprints pre-implantation or later in gestation. Instead, what appears to unite most imprinted genes sensitive to SMCHD1 is their reliance on polycomb-mediated methylation as germline or secondary imprints, therefore we propose that SMCHD1 acts downstream of polycomb imprints to mediate its function.


2020 ◽  
Vol 48 (12) ◽  
pp. 6874-6888
Author(s):  
Giuseppa Grasso ◽  
Takuma Higuchi ◽  
Victor Mac ◽  
Jérôme Barbier ◽  
Marion Helsmoortel ◽  
...  

Abstract MicroRNAs (miRNAs) are predicted to regulate the expression of >60% of mammalian genes and play fundamental roles in most biological processes. Deregulation of miRNA expression is a hallmark of most cancers and further investigation of mechanisms controlling miRNA biogenesis is needed. The double stranded RNA-binding protein, NF90 has been shown to act as a competitor of Microprocessor for a limited number of primary miRNAs (pri-miRNAs). Here, we show that NF90 has a more widespread effect on pri-miRNA biogenesis than previously thought. Genome-wide approaches revealed that NF90 is associated with the stem region of 38 pri-miRNAs, in a manner that is largely exclusive of Microprocessor. Following loss of NF90, 22 NF90-bound pri-miRNAs showed increased abundance of mature miRNA products. NF90-targeted pri-miRNAs are highly stable, having a lower free energy and fewer mismatches compared to all pri-miRNAs. Mutations leading to less stable structures reduced NF90 binding while increasing pri-miRNA stability led to acquisition of NF90 association, as determined by RNA electrophoretic mobility shift assay (EMSA). NF90-bound and downregulated pri-miRNAs are embedded in introns of host genes and expression of several host genes is concomitantly reduced. These data suggest that NF90 controls the processing of a subset of highly stable, intronic miRNAs.


2020 ◽  
Vol 219 (6) ◽  
Author(s):  
Julia Fueller ◽  
Konrad Herbst ◽  
Matthias Meurer ◽  
Krisztina Gubicza ◽  
Bahtiyar Kurtulmus ◽  
...  

Here we describe a time-efficient strategy for endogenous C-terminal gene tagging in mammalian tissue culture cells. An online platform is used to design two long gene-specific oligonucleotides for PCR with generic template cassettes to create linear dsDNA donors, termed PCR cassettes. PCR cassettes encode the tag (e.g., GFP), a Cas12a CRISPR RNA for cleavage of the target locus, and short homology arms for directed integration via homologous recombination. The integrated tag is coupled to a generic terminator shielding the tagged gene from the co-inserted auxiliary sequences. Co-transfection of PCR cassettes with a Cas12a-encoding plasmid leads to robust endogenous expression of tagged genes, with tagging efficiency of up to 20% without selection, and up to 60% when selection markers are used. We used target-enrichment sequencing to investigate all potential sources of artifacts. Our work outlines a quick strategy particularly suitable for exploratory studies using endogenous expression of fluorescent protein–tagged genes.


Sign in / Sign up

Export Citation Format

Share Document