Genetic Interactions in Yeast Between Ypt GTPases and Arf Guanine Nucleotide Exchangers

Genetics ◽  
1999 ◽  
Vol 152 (4) ◽  
pp. 1543-1556 ◽  
Author(s):  
Sara Jones ◽  
Gregory Jedd ◽  
Richard A Kahn ◽  
Alex Franzusoff ◽  
Francesca Bartolini ◽  
...  

Abstract Two families of GTPases, Arfs and Ypt/rabs, are key regulators of vesicular transport. While Arf proteins are implicated in vesicle budding from the donor compartment, Ypt/rab proteins are involved in the targeting of vesicles to the acceptor compartment. Recently, we have shown a role for Ypt31/32p in exit from the yeast trans-Golgi, suggesting a possible function for Ypt/rab proteins in vesicle budding as well. Here we report the identification of a new member of the Sec7-domain family, SYT1, as a high-copy suppressor of a ypt31/32 mutation. Several proteins that belong to the Sec7-domain family, including the yeast Gea1p, have recently been shown to stimulate nucleotide exchange by Arf GTPases. Nucleotide exchange by Arf GTPases, the switch from the GDP- to the GTP-bound form, is thought to be crucial for their function. Sec7p itself has an important role in the yeast secretory pathway. However, its mechanism of action is not yet understood. We show that all members of the Sec7-domain family exhibit distinct genetic interactions with the YPT genes. Biochemical assays demonstrate that, although the homology between the members of the Sec7-domain family is relatively low (20-35%) and limited to a small domain, they all can act as guanine nucleotide exchange factors (GEFs) for Arf proteins, but not for Ypt GTPases. The Sec7-domain of Sec7p is sufficient for this activity. Interestingly, the Sec7 domain activity is inhibited by brefeldin A (BFA), a fungal metabolite that inhibits some of the Arf-GEFs, indicating that this domain is a target for BFA. These results demonstrate that the ability to act as Arf-GEFs is a general property of all Sec7-domain proteins in yeast. The genetic interactions observed between Arf GEFs and Ypt GTPases suggest the existence of a Ypt-Arf GTPase cascade in the secretory pathway.

1992 ◽  
Vol 119 (4) ◽  
pp. 749-761 ◽  
Author(s):  
E J Tisdale ◽  
J R Bourne ◽  
R Khosravi-Far ◽  
C J Der ◽  
W E Balch

We have examined the role of ras-related rab proteins in transport from the ER to the Golgi complex in vivo using a vaccinia recombinant T7 RNA polymerase virus to express site-directed rab mutants. These mutations are within highly conserved domains involved in guanine nucleotide binding and hydrolysis found in ras and all members of the ras superfamily. Substitutions in the GTP-binding domains of rab1a and rab1b (equivalent to the ras 17N and 116I mutants) resulted in proteins which were potent trans dominant inhibitors of vesicular stomatitis virus glycoprotein (VSV-G protein) transport between the ER and cis Golgi complex. Immunofluorescence analysis indicated that expression of rab1b121I prevented delivery of VSV-G protein to the Golgi stack, which resulted in VSV-G protein accumulation in pre-Golgi punctate structures. Mutants in guanine nucleotide exchange or hydrolysis of the rab2 protein were also strong trans dominant transport inhibitors. Analogous mutations in rab3a, rab5, rab6, and H-ras did not inhibit processing of VSV-G to the complex, sialic acid containing form diagnostic of transport to the trans Golgi compartment. We suggest that at least three members of the rab family (rab1a, rab1b, and rab2) use GTP hydrolysis to regulate components of the transport machinery involved in vesicle traffic between early compartments of the secretory pathway.


1997 ◽  
Vol 8 (7) ◽  
pp. 1305-1316 ◽  
Author(s):  
C Nuoffer ◽  
S K Wu ◽  
C Dascher ◽  
W E Balch

Mss4 and its yeast homologue, Dss4, have been proposed to function as guanine nucleotide exchange factors (GEFs) for a subset of Rab proteins in the secretory pathway. We have previously shown that Rab1A mutants defective in GTP-binding potently inhibit endoplasmic reticulum to Golgi transport, presumably by sequestering an unknown GEF regulating its function. We now demonstrate that these mutants stably associate with Mss4 both in vivo and in vitro and that Mss4 effectively neutralizes the inhibitory activity of the Rab1A mutants. An equivalent Rab3A mutant (Rab3A[N135I]), a Rab protein specifically involved in regulated secretion at the cell surface, associates with Mss4 as efficiently as the Rab1A[N124I] mutant. Although Rab3A[N135I] prevents the ability of Mss4 to neutralize the inhibitory effects of Rab1A mutants on transport, it has no effect on Rab1 function or endoplasmic reticulum to Golgi transport. Furthermore, quantitative immunodepletion of Mss4 fails to inhibit transport in vitro. We conclude that Mss4 and its yeast homologue, Dss4, are not GEFs mediating activation of Rab, but rather, they interact with the transient guanine nucleotide-free state, defining a new class of Ras-superfamily GTPase effectors that function as guanine nucleotide-free chaperones (GFCs).


2002 ◽  
Vol 115 (14) ◽  
pp. 2867-2879 ◽  
Author(s):  
Valérie Derrien ◽  
Carole Couillault ◽  
Michel Franco ◽  
Stéphanie Martineau ◽  
Philippe Montcourrier ◽  
...  

We recently reported the identification of EFA6 (exchange factor for ARF6), a brain-specific Sec7-domain-containing guanine nucleotide exchange factor that works specifically on ARF6. Here, we have characterized the product of a broadly expressed gene encoding a novel 1056 amino-acid protein that we have named EFA6B. We show that EFA6B, which contains a Sec7 domain that is highly homologous to EFA6, works as an ARF6-specific guanine exchange factor in vitro. Like EFA6, which will be referred to as EFA6A from now on, EFA6B is involved in membrane recycling and colocalizes with ARF6 in actin-rich membrane ruffles and microvilli-like protrusions on the dorsal cell surface in transfected baby hamster kidney cells. Strikingly, homology between EFA6A and EFA6B is not limited to the Sec7 domain but extends to an adjacent pleckstrin homology (PH) domain and a ∼150 amino-acid C-terminal region containing a predicted coiled coil motif. Association of EFA6A with membrane ruffles and microvilli-like structures depends on the PH domain, which probably interacts with phosphatidylinositol 4,5-biphosphate. Moreover, we show that overexpression of the PH domain/C-terminal region of EFA6A or EFA6B in the absence of the Sec7 domain promotes lengthening of dorsal microvillar protrusions. This morphological change requires the integrity of the coiled-coil motif. Lastly, database analysis reveals that the EFA6-family comprises at least four members in humans and is conserved in multicellular organisms throughout evolution. Our results suggest that EFA6 family guanine exchange factors are modular proteins that work through the coordinated action of the catalytic Sec7 domain to promote ARF6 activation, through the PH domain to regulate association with specific subdomains of the plasma membrane and through the C-terminal region to control actin cytoskeletal reorganization.


2019 ◽  
Vol 30 (12) ◽  
pp. 1523-1535 ◽  
Author(s):  
Jay M. Bhatt ◽  
William Hancock ◽  
Justyna M. Meissner ◽  
Aneta Kaczmarczyk ◽  
Eunjoo Lee ◽  
...  

The integrity of the Golgi and trans-Golgi network (TGN) is disrupted by brefeldin A (BFA), which inhibits the Golgi-localized BFA-sensitive factor (GBF1) and brefeldin A–inhibited guanine nucleotide-exchange factors (BIG1 and BIG2). Using a cellular replacement assay to assess GBF1 functionality without interference from the BIGs, we show that GBF1 alone maintains Golgi architecture; facilitates secretion; activates ADP-ribosylation factor (ARF)1, 3, 4, and 5; and recruits ARF effectors to Golgi membranes. Unexpectedly, GBF1 also supports TGN integrity and recruits numerous TGN-localized ARF effectors. The impact of the catalytic Sec7 domain (Sec7d) on GBF1 functionality was assessed by swapping it with the Sec7d from ARF nucleotide-binding site opener (ARNO)/cytohesin-2, a plasma membrane GEF reported to activate all ARFs. The resulting chimera (GBF1-ARNO-GBF1 [GARG]) targets like GBF1, supports Golgi/TGN architecture, and facilitates secretion. However, unlike GBF1, GARG activates all ARFs (including ARF6) at the Golgi/TGN and recruits additional ARF effectors to the Golgi/TGN. Our results have general implications: 1) GEF’s targeting is independent of Sec7d, but Sec7d influence the GEF substrate specificity and downstream effector events; 2) all ARFs have access to all membranes, but are restricted in their distribution by the localization of their activating GEFs; and 3) effector association with membranes requires the coincidental presence of activated ARFs and specific membrane identifiers.


2007 ◽  
Vol 18 (6) ◽  
pp. 2244-2253 ◽  
Author(s):  
Lee Ann Cohen ◽  
Akira Honda ◽  
Peter Varnai ◽  
Fraser D. Brown ◽  
Tamas Balla ◽  
...  

ARNO is a soluble guanine nucleotide exchange factor (GEF) for the Arf family of GTPases. Although in biochemical assays ARNO prefers Arf1 over Arf6 as a substrate, its localization in cells at the plasma membrane (PM) suggests an interaction with Arf6. In this study, we found that ARNO activated Arf1 in HeLa and COS-7 cells resulting in the recruitment of Arf1 on to dynamic PM ruffles. By contrast, Arf6 was activated less by ARNO than EFA6, a canonical Arf6 GEF. Remarkably, Arf6 in its GTP-bound form recruited ARNO to the PM and the two proteins could be immunoprecipitated. ARNO binding to Arf6 was not mediated through the catalytic Sec7 domain, but via the pleckstrin homology (PH) domain. Active Arf6 also bound the PH domain of Grp1, another ARNO family member. This interaction was direct and required both inositol phospholipids and GTP. We propose a model of sequential Arf activation at the PM whereby Arf6-GTP recruits ARNO family GEFs for further activation of other Arf isoforms.


1998 ◽  
Vol 9 (10) ◽  
pp. 2819-2837 ◽  
Author(s):  
Sara Jones ◽  
Celeste J. Richardson ◽  
Robert J. Litt ◽  
Nava Segev

Small GTPases of the Ypt/Rab family are involved in the regulation of vesicular transport. Cycling between the GDP- and GTP-bound forms and the accessory proteins that regulate this cycling are thought to be crucial for Ypt/Rab function. Guanine nucleotide exchange factors (GEFs) stimulate both GDP loss and GTP uptake, and GTPase-activating proteins (GAPs) stimulate GTP hydrolysis. Little is known about GEFs and GAPs for Ypt/Rab proteins. In this article we report the identification and initial characterization of two factors that regulate nucleotide cycling by Ypt1p, which is essential for the first two steps of the yeast secretory pathway. The Ypt1p-GEF stimulates GDP release and GTP uptake at least 10-fold and is specific for Ypt1p. Partially purified Ypt1p-GEF can rescue the inhibition caused by the dominant-negative Ypt1p-D124N mutant of in vitro endoplasmic reticulum-to-Golgi transport. This mutant probably blocks transport by inhibiting the GEF, suggesting that we have identified the physiological GEF for Ypt1p. The Ypt1p-GAP stimulates GTP hydrolysis by Ypt1p up to 54-fold, has a higher affinity for the GTP-bound form of Ypt1p than for the GDP-bound form, and is specific to a subgroup of exocytic Ypt proteins. The Ypt1p-GAP activity is not affected by deletion of two genes that encode known Ypt GAPs, GYP7and GYP1, nor is it influenced by mutations inSEC18, SEC17, or SEC22, genes whose products are involved in vesicle fusion. The GEF and GAP activities for Ypt1p localize to particulate cellular fractions. However, contrary to the predictions of current models, the GEF activity localizes to the fraction that functions as the acceptor in an endoplasmic reticulum-to-Golgi transport assay, whereas the GAP activity cofractionates with markers for the donor. On the basis of our current and previous results, we propose a new model for the role of Ypt/Rab nucleotide cycling and the factors that regulate this process.


Sign in / Sign up

Export Citation Format

Share Document