downstream effector
Recently Published Documents


TOTAL DOCUMENTS

645
(FIVE YEARS 205)

H-INDEX

72
(FIVE YEARS 6)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262576
Author(s):  
Jiahui Xu ◽  
Gale M. Strasburg ◽  
Kent M. Reed ◽  
Sandra G. Velleman

Satellite cells (SCs) are stem cells responsible for post-hatch muscle growth through hypertrophy and in birds are sensitive to thermal stress during the first week after hatch. The mechanistic target of rapamycin (mTOR) signaling pathway, which is highly responsive to thermal stress in differentiating turkey pectoralis major (p. major) muscle SCs, regulates protein synthesis and the activities of SCs through a downstream effector, S6 kinase (S6K). The objectives of this study were: 1) to determine the effect of heat (43°C) and cold (33°C) stress on activity of the mTOR/S6K pathway in SCs isolated from the p. major muscle of one-week-old faster-growing modern commercial (NC) turkeys compared to those from slower-growing Randombred Control Line 2 (RBC2) turkeys, and 2) to assess the effect of mTOR knockdown on the proliferation, differentiation, and expression of myogenic regulatory factors of the SCs. Heat stress increased phosphorylation of both mTOR and S6K in both turkey lines, with greater increases observed in the RBC2 line. With cold stress, greater reductions in mTOR and S6K phosphorylation were observed in the NC line. Early knockdown of mTOR decreased proliferation, differentiation, and expression of myoblast determination protein 1 and myogenin in both lines independent of temperature, with the RBC2 line showing greater reductions in proliferation and differentiation than the NC line at 38° and 43°C. Proliferating SCs are more dependent on mTOR/S6K-mediated regulation than differentiating SCs. Thus, thermal stress can affect breast muscle hypertrophic potential by changing satellite cell proliferation and differentiation, in part, through the mTOR/S6K pathway in a growth-dependent manner. These changes may result in irreversible effects on the development and growth of the turkey p. major muscle.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuexi He ◽  
Xiran Yin ◽  
Jianjun Yan ◽  
Xue Li ◽  
Qing Sun

Background. The pathogenesis of long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are well studied in psoriasis. However, little is known about how specific lncRNAs and miRNAs affect the mechanism of psoriasis development and which pathways are involved. Objectives. To explore the role of the lncRNA H19/miR-766-3p/S1PR3 axis in psoriasis. Methods. miRNA and lncRNA microarrays were performed using IL-22-induced HaCaT cells and psoriatic lesions, respectively. Fluorescence in situ hybridization and quantitative reverse-transcriptase polymerase chain reaction were used to detect the expression of miR-766-3p and lncRNA H19. Luciferase reporter assays were used to identify miR-766-3p/lncRNA H19 and miR-766-3p/S1PR3 combinations. CCK-8 and ELISA were performed to evaluate the proliferation of keratinocytes and the secretion of pro-inflammatory cytokines. Western blot analysis was used to detect the expression of S1PR3 and its downstream effector proteins. Results. MiR-766-3p was upregulated in both HaCaT cells treated with the psoriasis-related cytokine pool (IL-17A, IL-22, IL-1 alpha, oncostatin M, and TNF-alpha) and tissues. Overexpression of miR-766-3p promoted keratinocyte proliferation and IL-17A and IL-22 secretion. LncRNA H19 and S1PR3 were demonstrably combined with miR-766-3p by luciferase reporter assay. lncRNA H19 repressed proliferation and inflammation, which were reduced by the miR-766-3p. AKT/mTOR pathway effected proliferation and inflammation by the lncRNA H19/miR-766-3p/S1PR3 axis. Conclusions. We established that downregulation of lncRNA H19 promoted the proliferation of keratinocytes and skin inflammation by up-regulating miR-766-3p expression levels and inhibiting activation of S1PR3 through the AKT/mTOR pathway in psoriasis.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009980
Author(s):  
Wenfeng Zhang ◽  
Chaoying Wu ◽  
Rui Ni ◽  
Qifen Yang ◽  
Lingfei Luo ◽  
...  

The liver is a crucial center in the regulation of energy homeostasis under starvation. Although downregulation of mammalian target of rapamycin complex 1 (mTORC1) has been reported to play pivotal roles in the starvation responses, the underpinning mechanisms in particular upstream factors that downregulate mTORC1 remain largely unknown. To identify genetic variants that cause liver energy disorders during starvation, we conduct a zebrafish forward genetic screen. We identify a liver hulk (lvh) mutant with normal liver under feeding, but exhibiting liver hypertrophy under fasting. The hepatomegaly in lvh is caused by enlarged hepatocyte size and leads to liver dysfunction as well as limited tolerance to starvation. Positional cloning reveals that lvh phenotypes are caused by mutation in the ftcd gene, which encodes the formimidoyltransferase cyclodeaminase (FTCD). Further studies show that in response to starvation, the phosphorylated ribosomal S6 protein (p-RS6), a downstream effector of mTORC1, becomes downregulated in the wild-type liver, but remains at high level in lvh. Inhibition of mTORC1 by rapamycin rescues the hepatomegaly and liver dysfunction of lvh. Thus, we characterize the roles of FTCD in starvation response, which acts as an important upstream factor to downregulate mTORC1, thus preventing liver hypertrophy and dysfunction.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009982
Author(s):  
Deepika Sharma ◽  
Anthony J. Mirando ◽  
Abigail Leinroth ◽  
Jason T. Long ◽  
Courtney M. Karner ◽  
...  

Sonic Hedgehog/GLI3 signaling is critical in regulating digit number, such that Gli3-deficiency results in polydactyly and Shh-deficiency leads to digit number reductions. SHH/GLI3 signaling regulates cell cycle factors controlling mesenchymal cell proliferation, while simultaneously regulating Grem1 to coordinate BMP-induced chondrogenesis. SHH/GLI3 signaling also coordinates the expression of additional genes, however their importance in digit formation remain unknown. Utilizing genetic and molecular approaches, we identified HES1 as a downstream modifier of the SHH/GLI signaling axis capable of inducing preaxial polydactyly (PPD), required for Gli3-deficient PPD, and capable of overcoming digit number constraints of Shh-deficiency. Our data indicate that HES1, a direct SHH/GLI signaling target, induces mesenchymal cell proliferation via suppression of Cdkn1b, while inhibiting chondrogenic genes and the anterior autopod boundary regulator, Pax9. These findings establish HES1 as a critical downstream effector of SHH/GLI3 signaling in the development of PPD.


2021 ◽  
Author(s):  
Robert Tampe ◽  
Maria Florencia Sánchez ◽  
Marina S. Dietz ◽  
Ulrike Müller ◽  
Julian Weghuber ◽  
...  

Membrane receptors are central to cell-cell communication. Receptor clustering at the plasma membrane modulates physiological responses, and microscale receptor organization is critical for downstream signaling. Spatially restricted cluster formation of the neuropeptide Y2 hormone receptor (Y2R) was observed in vivo; however, the relevance of this confinement is not fully understood. Here, we controlled Y2R clustering in situ by a multivalent chelator nanotool in prestructured matrices. Fast Y2R enrichment in microscale arrays triggered a ligand-independent downstream signaling determined by an increase in cytosolic calcium, cell spreading and migration. We reveal that ligand-independent signaling by confinement differs from ligand-induced activation in the recruitment of arrestin-3 as downstream effector, which was recruited to confined regions only in presence of the ligand. The employed multivalent nanotool facilitated a dynamic receptor enrichment with high exchange in the confined regions, comparable to microscale condensates. This concept enables in situ organization of membrane receptors and the exploration of ligand-independent receptor signaling.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3545
Author(s):  
Raisa Kraaijvanger ◽  
Kees Seldenrijk ◽  
Els Beijer ◽  
Jan Damen ◽  
Jayne Louise Wilson ◽  
...  

Mechanistic target of rapamycin complex 1 (mTORC1) has been linked to different diseases. The mTORC1 signaling pathway is suggested to play a role in the granuloma formation of sarcoidosis. Recent studies demonstrated conflicting data on mTORC1 activation in patients with sarcoidosis by measuring activation of its downstream target S6 kinase (S6K) with either 33% or 100% of patients. Therefore, the aim of our study was to reevaluate the percentage of S6K activation in sarcoidosis patients in a Dutch cohort. To investigate whether this activation is specific for sarcoid granulomas, we also included Dutch patients with other granulomatous diseases of the lung. The activation of the S6K signaling pathway was evaluated by immunohistochemical staining of its downstream effector phospho-S6 in tissue sections. Active S6K signaling was detected in 32 (43%) of the sarcoidosis patients. Twelve (31%) of the patients with another granulomatous disorder also showed activated S6K signaling, demonstrating that the mTORC1 pathway may be activated in a range for different granulomatous diseases (p = 0.628). Activation of S6K can only be found in a subgroup of patients with sarcoidosis, as well as in patients with other granulomatous pulmonary diseases, such as hypersensitivity pneumonitis or vasculitis. No association between different clinical phenotypes and S6K activation can be found in sarcoidosis.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7561
Author(s):  
Ozge Tatli ◽  
Gizem Dinler Doganay

Aberrant activity of oncogenic rat sarcoma virus (RAS) protein promotes tumor growth and progression. RAS-driven cancers comprise more than 30% of all human cancers and are refractory to frontline treatment strategies. Since direct targeting of RAS has proven challenging, efforts have been centered on the exploration of inhibitors for RAS downstream effector kinases. Two major RAS downstream signaling pathways, including the Raf/MEK/Erk cascade and the phosphatidylinositol-3-kinase (PI3K) pathway, have become compelling targets for RAS-driven cancer therapy. However, the main drawback in the blockade of a single RAS effector is the multiple levels of crosstalk and compensatory mechanisms between these two pathways that contribute to drug resistance against monotherapies. A growing body of evidence reveals that the sequential or synergistic inhibition of multiple RAS effectors is a more convenient route for the efficacy of cancer therapy. Herein, we revisit the recent developments and discuss the most promising modalities targeting canonical RAS downstream effectors for the treatment of RAS-driven cancers.


Leukemia ◽  
2021 ◽  
Author(s):  
Corinna Spohr ◽  
Teresa Poggio ◽  
Geoffroy Andrieux ◽  
Katharina Schönberger ◽  
Nina Cabezas-Wallscheid ◽  
...  

AbstractInternal tandem duplications (ITD) of the FMS-like tyrosine kinase 3 (FLT3) predict poor prognosis in acute myeloid leukemia (AML) and often co-exist with inactivating DNMT3A mutations. In vitro studies implicated Grb2-associated binder 2 (GAB2) as FLT3-ITD effector. Utilizing a Flt3-ITD knock-in, Dnmt3a haploinsufficient mouse model, we demonstrate that Gab2 is essential for the development of Flt3-ITD driven AML in vivo, as Gab2 deficient mice displayed prolonged survival, presented with attenuated liver and spleen pathology and reduced blast counts. Furthermore, leukemic bone marrow from Gab2 deficient mice exhibited reduced colony-forming unit capacity and increased FLT3 inhibitor sensitivity. Using transcriptomics, we identify the genes encoding for Axl and the Ret co-receptor Gfra2 as targets of the Flt3-ITD/Gab2/Stat5 axis. We propose a pathomechanism in which Gab2 increases signaling of these receptors by inducing their expression and by serving as downstream effector. Thereby, Gab2 promotes AML aggressiveness and drug resistance as it incorporates these receptor tyrosine kinases into the Flt3-ITD signaling network. Consequently, our data identify GAB2 as a promising biomarker and therapeutic target in human AML.


2021 ◽  
Author(s):  
William S O'Shaughnessy ◽  
Xiaoyu Hu ◽  
Sarah Ana Henriquez ◽  
Michael L Reese

Accurate cellular replication balances the biogenesis and turnover of complex structures. Apicomplexan parasites such as Plasmodium and Toxoplasma replicate by forming daughter cells within an intact mother cell, creating additional challenges to ensuring fidelity of division. Critical to these parasites' infectivity is an intricate cytoskeleton structure called the apical complex. Before the daughter apical complex can be inserted into the plasma membrane, the maternal material must be turned over. We previously identified the kinase ERK7 as required for the maturation of the apical complex in Toxoplasma gondii. Here we define the Toxoplasma ERK7 interactome, and identify a putative E3 ligase, CSAR1, as the downstream effector responsible for the phenotype. Genetic disruption of CSAR1 fully suppresses loss of the apical complex upon ERK7 knockdown. Furthermore, we show that CSAR1 is normally responsible for turnover of maternal cytoskeleton during cytokinesis, and that its aberrant function is driven by a mislocalization from the parasite residual body to the maternal and daughter apical complexes. These data identify a protein homeostasis pathway critical for Toxoplasma replication and fitness and suggest an unappreciated role for the parasite residual body in compartmentalizing processes that threaten the fidelity of parasite development.


2021 ◽  
Author(s):  
Manu Beerens ◽  
Jore Van Wauwe ◽  
Sander Craps ◽  
Margo Daems ◽  
KC Ashmita ◽  
...  

ABSTRACTRationaleProper functionality of the circulatory system requires correct arteriovenous (AV) endothelial cell (EC) differentiation. While Notch signaling and its downstream effector Hes- Related Family bHLH Transcription Factor with YRPW Motif (Hey)2 favor arterial specification, transcription factor (TF) chicken ovalbumin upstream transcription factor 2 (Coup-TFII) inhibits canonical Notch activity to induce venous identity. However, transcriptional programs that compete with Coup-TFII to orchestrate arterial specification upstream of Notch remain largely unknown. We identified positive regulatory domain-containing protein (Prdm)16 as an arterial EC- specific TF, but its role during arterial EC specification and development remains unexplored.ObjectiveTo unravel the role of Prdm16 during arterial endothelial lineage specification and artery formation.Methods and ResultsTranscriptomic data of freshly isolated arterial and venous ECs from humans and mice revealed that Prdm16 is exclusively expressed by arterial ECs throughout development. This expression pattern was independent of hemodynamic factors and conserved in zebrafish. Accordingly, loss of prdm16 in zebrafish perturbed AV endothelial specification and caused AV malformations in an EC-autonomous manner. This coincided with reduced canonical Notch activity in arterial ECs and was amplified when prdm16 and notch pathway members were concomitantly knocked down. In vitro studies further indicated that Prdm16 not only amplified Notch signaling, but also physically and functionally interacted with Hey2 to drive proper arterial specification.ConclusionWe showed that Prdm16 plays a pivotal role during arterial development through its physical and functional interaction with canonical Notch. As both Hey2 and Prdm16 have been associated with diverse vascular disorders including migraine and atherosclerosis, Prdm16 represents an attractive new target to treat these vascular disorders.


Sign in / Sign up

Export Citation Format

Share Document