Gene Overexpression as a Tool for Identifying New trans-Acting Factors Involved in Translation Termination in Saccharomyces cerevisiae

Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 585-594
Author(s):  
Olivier Namy ◽  
Isabelle Hatin ◽  
Guillaume Stahl ◽  
Hongmei Liu ◽  
Stephanie Barnay ◽  
...  

Abstract In eukaryotes, translation termination is dependent on the availability of both release factors, eRF1 and eRF3; however, the precise mechanisms involved remain poorly understood. In particular, the fact that the phenotype of release factor mutants is pleiotropic could imply that other factors and interactions are involved in translation termination. To identify unknown elements involved in this process, we performed a genetic screen using a reporter strain in which a leaky stop codon is inserted in the lacZ reporter gene, attempting to isolate factors modifying termination efficiency when overexpressed. Twelve suppressors and 11 antisuppressors, increasing or decreasing termination readthrough, respectively, were identified and analyzed for three secondary phenotypes often associated with translation mutations: thermosensitivity, G418 sensitivity, and sensitivity to osmotic pressure. Interestingly, among these candidates, we identified two genes, SSO1 and STU2, involved in protein transport and spindle pole body formation, respectively, suggesting puzzling connections with the translation termination process.

Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1439-1450
Author(s):  
Mark E Nickas ◽  
Aaron M Neiman

Abstract Spore formation in Saccharomyces cerevisiae requires the de novo synthesis of prospore membranes and spore walls. Ady3p has been identified as an interaction partner for Mpc70p/Spo21p, a meiosis-specific component of the outer plaque of the spindle pole body (SPB) that is required for prospore membrane formation, and for Don1p, which forms a ring-like structure at the leading edge of the prospore membrane during meiosis II. ADY3 expression has been shown to be induced in midsporulation. We report here that Ady3p interacts with additional components of the outer and central plaques of the SPB in the two-hybrid assay. Cells that lack ADY3 display a decrease in sporulation efficiency, and most ady3Δ/ady3Δ asci that do form contain fewer than four spores. The sporulation defect in ady3Δ/ady3Δ cells is due to a failure to synthesize spore wall polymers. Ady3p forms ring-like structures around meiosis II spindles that colocalize with those formed by Don1p, and Don1p rings are absent during meiosis II in ady3Δ/ady3Δ cells. In mpc70Δ/mpc70Δ cells, Ady3p remains associated with SPBs during meiosis II. Our results suggest that Ady3p mediates assembly of the Don1p-containing structure at the leading edge of the prospore membrane via interaction with components of the SPB and that this structure is involved in spore wall formation.


Genetics ◽  
2002 ◽  
Vol 162 (2) ◽  
pp. 567-578 ◽  
Author(s):  
Susan McBratney ◽  
Mark Winey

Abstract Mutation of either the yeast MPS2 or the NDC1 gene leads to identical spindle pole body (SPB) duplication defects: The newly formed SPB is improperly inserted into the nuclear envelope (NE), preventing the cell from forming a bipolar mitotic spindle. We have previously shown that both MPS2 and NDC1 encode integral membrane proteins localized at the SPB. Here we show that CUE1, previously known to have a role in coupling ubiquitin conjugation to ER degradation, is an unusual dosage suppressor of mutations in MPS2 and NDC1. Cue1p has been shown to recruit the soluble ubiquitin-conjugating enzyme, Ubc7p, to the cytoplasmic face of the ER membrane where it can ubiquitinate its substrates and target them for degradation by the proteasome. Both mps2-1 and ndc1-1 are also suppressed by disruption of UBC7 or its partner, UBC6. The Mps2-1p mutant protein level is markedly reduced compared to wild-type Mps2p, and deletion of CUE1 restores the level of Mps2-1p to nearly wild-type levels. Our data indicate that Mps2p may be targeted for degradation by the ER quality control pathway.


2018 ◽  
Vol 29 (19) ◽  
pp. 2280-2291 ◽  
Author(s):  
Michele Haltiner Jones ◽  
Eileen T. O’Toole ◽  
Amy S. Fabritius ◽  
Eric G. Muller ◽  
Janet B. Meehl ◽  
...  

Phosphorylation modulates many cellular processes during cell cycle progression. The yeast centrosome (called the spindle pole body, SPB) is regulated by the protein kinases Mps1 and Cdc28/Cdk1 as it nucleates microtubules to separate chromosomes during mitosis. Previously we completed an SPB phosphoproteome, identifying 297 sites on 17 of the 18 SPB components. Here we describe mutagenic analysis of phosphorylation events on Spc29 and Spc42, two SPB core components that were shown in the phosphoproteome to be heavily phosphorylated. Mutagenesis at multiple sites in Spc29 and Spc42 suggests that much of the phosphorylation on these two proteins is not essential but enhances several steps of mitosis. Of the 65 sites examined on both proteins, phosphorylation of the Mps1 sites Spc29-T18 and Spc29-T240 was shown to be critical for function. Interestingly, these two sites primarily influence distinct successive steps; Spc29-T240 is important for the interaction of Spc29 with Spc42, likely during satellite formation, and Spc29-T18 facilitates insertion of the new SPB into the nuclear envelope and promotes anaphase spindle elongation. Phosphorylation sites within Cdk1 motifs affect function to varying degrees, but mutations only have significant effects in the presence of an MPS1 mutation, supporting a theme of coregulation by these two kinases.


Sign in / Sign up

Export Citation Format

Share Document