scholarly journals Map-Based Cloning of Leaf Rust Resistance Gene Lr21 From the Large and Polyploid Genome of Bread Wheat

Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 655-664 ◽  
Author(s):  
Li Huang ◽  
Steven A Brooks ◽  
Wanlong Li ◽  
John P Fellers ◽  
Harold N Trick ◽  
...  

Abstract We report the map-based cloning of the leaf rust resistance gene Lr21, previously mapped to a generich region at the distal end of chromosome arm 1DS of bread wheat (Triticum aestivum L.). Molecular cloning of Lr21 was facilitated by diploid/polyploid shuttle mapping strategy. Cloning of Lr21 was confirmed by genetic transformation and by a stably inherited resistance phenotype in transgenic plants. Lr21 spans 4318 bp and encodes a 1080-amino-acid protein containing a conserved nucleotide-binding site (NBS) domain, 13 imperfect leucine-rich repeats (LRRs), and a unique 151-amino-acid sequence missing from known NBS-LRR proteins at the N terminus. Fine-structure genetic analysis at the Lr21 locus detected a noncrossover (recombination without exchange of flanking markers) within a 1415-bp region resulting from either a gene conversion tract of at least 191 bp or a double crossover. The successful map-based cloning approach as demonstrated here now opens the door for cloning of many crop-specific agronomic traits located in the gene-rich regions of bread wheat.

2007 ◽  
Vol 65 (1-2) ◽  
pp. 93-106 ◽  
Author(s):  
Sylvie Cloutier ◽  
Brent D. McCallum ◽  
Caroline Loutre ◽  
Travis W. Banks ◽  
Thomas Wicker ◽  
...  

2014 ◽  
Vol 50 (No. 4) ◽  
pp. 262-267 ◽  
Author(s):  
J. Wang ◽  
L. Shi ◽  
L. Zhu ◽  
X. Li ◽  
D. Liu

The wheat (Triticum aestivum L.) line 5R618, bred at the China Agricultural University, is resistant in the seedling stage to the majority of the current Chinese pathotypes of wheat leaf rust (Puccinia triticina). To identify and map the leaf rust resistance gene in the 5R618 line, F<sub>2</sub> plants and F<sub>2:3</sub> families from a cross between 5R618 and Zhengzhou5389 (susceptible) were inoculated in the greenhouse with the Chinese P. triticina pathotype THJP. Results from the F<sub>2</sub> and F<sub>2:3</sub> populations indicate that a single dominant gene, temporarily designated&nbsp;Lr5R, conferred resistance. Using the molecular marker method, Lr5R was located on the 3DL chromosome. It was closely linked to the markers Xbarc71 and OPJ-09 with genetic distances of 0.9 cM and 1.0 cM, respectively. At present only one designated gene (Lr24) is located on the 3DL chromosome. The genetic distance between Lr5R&nbsp;and Lr24 confirms that Lr5R is a new leaf rust resistance gene.


2012 ◽  
Vol 91 (2) ◽  
pp. 155-161 ◽  
Author(s):  
AMANDEEP KAUR RIAR ◽  
SATINDER KAUR ◽  
H. S. DHALIWAL ◽  
KULDEEP SINGH ◽  
PARVEEN CHHUNEJA

Sign in / Sign up

Export Citation Format

Share Document