scholarly journals Shear-wave splitting beneath Fennoscandia — evidence for dipping structures and laterally varying multilayer anisotropy

2020 ◽  
Vol 223 (3) ◽  
pp. 1525-1547
Author(s):  
Michael Grund ◽  
Joachim R R Ritter

SUMMARY The geodynamic evolution of Fennoscandia in northern Europe (Finland, Sweden and Norway) is coined by ca. 3 Ga history of tectonic processes including continental growth in its central and eastern parts and Neogene uplift processes of the Scandinavian mountains (Scandes) located along its western edge. Many details are still under debate and we contribute with new findings from studying deep-seated seismic anisotropy. Using teleseismic waveforms of more than 260 recording stations (long-running permanent networks, previous temporary experiments and newly installed temporary stations) in the framework of the ScanArray experiment, we present the most comprehensive study to date on seismic anisotropy across Fennoscandia. The results are based on single and multi-event shear-wave splitting analysis of core refracted shear waves (SKS, SKKS, PKS and sSKS). The splitting measurements indicate partly complex, laterally varying multilayer anisotropy for individual areas. Consistent measurements at permanent and temporary recording stations over several years and for seismic events of specific source regions allow us to robustly constrain dipping anisotropic structures by adding systematic forward modelling. Although the data coverage is partly limited to only few source regions, our findings support concepts of continental growth due to individual episodes of (paleo-) subduction, each affecting a plunging of the anisotropic fast axis direction due to collisional deformation. Along the northern Scandes the fast axis direction (ϕ) is parallel to the mountain range (NE-SW), whereas an NNW-SSE trend dominates across the southern Scandes. In the south, across the Sorgenfrei–Tornquist Zone, a NW-SE trend of ϕ dominates which is parallel to this suture zone. The Oslo Graben is characterized by an NNE-SSW trend of ϕ. In northern Norway and Sweden (mainly Paleoproterozoic lithosphere), a dipping anisotropy with ϕ towards NE prevails. This stands in contrast to the Archean domain in the NE of our study region where ϕ is consistently oriented NNE-SSW. In the Finnish part of the Svecofennian domain, a complex two-layer anisotropy pattern is found which may be due to lateral variations around the seismic stations and which requires a higher data density than ours for a unique model building. Based on these findings our study demonstrates the importance of long recording periods (in the best case > 10 yr) to obtain a sufficient data coverage at seismic stations, especially to perform meaningful structural modelling based on shear-wave splitting observations.

Author(s):  
Enbo Fan ◽  
Yumei He ◽  
Yinshuang Ai ◽  
Stephen S. Gao ◽  
Kelly H. Liu ◽  
...  

2018 ◽  
Vol 216 (1) ◽  
pp. 535-544 ◽  
Author(s):  
Changhui Ju ◽  
Junmeng Zhao ◽  
Ning Huang ◽  
Qiang Xu ◽  
Hongbing Liu

2021 ◽  
Author(s):  
◽  
Kenny Graham

<p>This thesis involves the study of crustal seismic anisotropy through shear wave splitting. For the past three decades, shear wave splitting (SWS) measurements from crustal earthquakes have been utilized as a technique to characterize seismic anisotropic structures and to infer in situ crustal properties such as the state of the stress and fracture geometry and density. However, the potential of this technique is yet to be realized in part because measurements on local earthquakes are often controlled and/or affected by physical mechanisms and processes which lead to variations in measurements and make interpretation difficult. Many studies have suggested a variety of physical mechanisms that control and/or affect SWS measurements, but few studies have quantitatively tested these suggestions. This thesis seeks to fill this gap by investigating what controls crustal shear-wave splitting (SWS) measurements using empirical and numerical simulation approaches, with the ultimate aim of improving SWS interpretation. For our empirical approach, we used two case studies to investigate what physical processes control seismic anisotropy in the crust at different scales and tectonic settings. In the numerical simulation test, we simulate the propagation of seismic waves in a variety of scenarios.  We begin by measuring crustal anisotropy via SWS analysis around central New Zealand, where clusters of closely-spaced earthquakes have occurred. We used over 40,000 crustal earthquakes across 36 stations spanning close to 5.5 years between 2013 and 2018 to generate the largest catalog of high-quality SWS measurements (~102,000) around the Marlborough and Wellington region. The size of our SWS catalog allowed us to perform a detailed systematic analysis to investigate the processes that control crustal anisotropy and we also investigated the spatial and temporal variation of the anisotropic structure around the region. We observed a significant spatial variation of SWS measurements in Central New Zealand. We found that the crustal anisotropy around Central New Zealand is confined to the upper few kilometers of the crust, and is controlled by either one mechanism or a combination of more than one (such as structural, tectonic stresses, and gravitational stresses). The high correspondence between the orientation of the maximum horizontal compressive stress calculated from gravitational potential energy from topography and average fast polarization orientation around the Kaikōura region suggests that gravitationally induced stresses control the crustal anisotropy in the Kaikōura region. We suggest that examining the effect of gravitational stresses on crustal seismic anisotropy should not be neglected in future studies. We also observed no significant temporal changes in the state of anisotropy over the 5.5 year period despite the occurrence of significant seismicity.   For the second empirical study, we characterized the anisotropic structure of a fault approaching failure (the Alpine Fault of New Zealand). We performed detailed SWS analysis on local earthquakes that were recorded on a dense array of 159 three-component seismometers with inter-station spacing about 30 m around the Whataroa Valley, New Zealand. The SWS analysis of data from this dense deployment enabled us to map the spatial characteristics of the anisotropic structure and also to investigate the mechanisms that control anisotropy in the Whataroa valley in the vicinity of the Alpine Fault. We observed that the orientation of the fast direction is parallel to the strike of the Alpine Fault trace and the orientations of the regional and borehole foliation planes. We also observed that there was no significant spatial variation of the anisotropic structure as we move across the Alpine Fault trace from the hanging wall to the footwall. We inferred that the geological structures, such as the Alpine Fault fabric and foliations within the valley, are the main mechanisms that control the anisotropic structure in the Whataroa valley.    For our numerical simulation approach, we simulate waveforms propagating through an anisotropic media (using both 1-D and 3-D techniques). We simulate a variety of scenarios, to investigate how some of the suggested physical mechanisms affect SWS measurements. We considered (1) the effect on seismic waves caused by scatterers along the waves' propagation path, (2) the effect of the earthquake source mechanism, (3) the effect of incidence angle of the incoming shear wave. We observed that some of these mechanisms (such as the incidence angle of the incoming shear wave and scatterers) significantly affect SWS measurement while others such as earthquake source mechanisms have less effect on SWS measurements. We also observed that the effect of most of these physical mechanisms depends on the wavelength of the propagating shear wave relative to the size of the features. There is a significant effect on SWS measurements if the size of the physical mechanism (such as scatterers) is comparable to the wavelength of the incoming shear wave. With a larger wavelength, the wave treats the feature as a homogeneous medium.</p>


2014 ◽  
Vol 119 (6) ◽  
pp. 4923-4937 ◽  
Author(s):  
Garrett Ito ◽  
Robert Dunn ◽  
Aibing Li ◽  
Cecily J. Wolfe ◽  
Alejandro Gallego ◽  
...  

Author(s):  
Cristo Ramirez ◽  
Andrew Nyblade ◽  
Michael E Wysession ◽  
Martin Pratt ◽  
Fenitra Andriampenomanana ◽  
...  

2015 ◽  
Vol 120 (12) ◽  
pp. 8404-8421 ◽  
Author(s):  
F. A. Darbyshire ◽  
I. D. Bastow ◽  
A. M. Forte ◽  
T. E. Hobbs ◽  
A. Calvel ◽  
...  

2011 ◽  
Vol 304 (1-2) ◽  
pp. 147-157 ◽  
Author(s):  
Yonghua Li ◽  
Qingju Wu ◽  
Fengxue Zhang ◽  
Qiangqiang Feng ◽  
Ruiqing Zhang

2019 ◽  
Vol 220 (3) ◽  
pp. 1491-1503 ◽  
Author(s):  
Nan Hu ◽  
Yonghua Li ◽  
Liangxin Xu

SUMMARY The Northeastern Tibetan Plateau has thickened crust and is still undergoing strong active crustal shortening and deformation. Crustal anisotropy can provide clues to how the crust is currently deforming and evolving. We use an automatic method to analyse the upper-crustal anisotropy of the NE Tibetan Plateau and the adjacent region using local earthquakes recorded at 39 permanent seismic stations during the period 2009–2018. The majority of the dominant fast directions are consistent with the maximum horizontal stress orientation, suggesting that the upper-crustal anisotropy is mainly controlled by the regional or local stress field. Several fault-parallel measurements are observed for stations on or near to the main faults. These fault-parallel fast directions indicate that the main mechanism of upper-crustal anisotropy is associated with shear fabric caused by deformation. Fast directions neither fault-parallel nor stress-parallel are observed at stations lying several kilometres away from fault zones, likely reflecting the combined influence of stress-aligned microcracks and active faults. A comparison between our upper-crustal anisotropy parameters and those inferred from previous anisotropy studies that used receiver function and teleseismic shear wave splitting measurements suggests that the crust has the same deformation mechanisms as mantle anisotropy in the southern part of the Western Qinling Fault, whereas the upper-crustal anisotropic mechanism is different from those of lower crust and mantle anisotropy in the northern part of the Western Qinling Fault. These observations imply that the Western Qinling Fault may be an important boundary fault.


Sign in / Sign up

Export Citation Format

Share Document