scholarly journals Integration of SH seismic reflection and Love-wave dispersion data for shear wave velocity determination over quick clays

2017 ◽  
Vol 210 (3) ◽  
pp. 1922-1931 ◽  
Author(s):  
Cesare Comina ◽  
Charlotte M. Krawczyk ◽  
Ulrich Polom ◽  
Laura Valentina Socco
1959 ◽  
Vol 49 (4) ◽  
pp. 331-336
Author(s):  
John De Noyer

Abstract Short-period Love wave dispersion from the Kurile Islands earthquake (June 22, 1952; O = 21b 41m 53s; φ = 46° N; λ = 153°.5 E) can be explained with a two-layer crustal model in which the upper 2 km. of material has a shear-wave velocity of 2.31 km/sec. The second layer has a thickness of 4 km. and a shear-wave velocity of 3.71 to 3.86 km/sec. Shear-wave velocities of 4.50 to 4.52 km/sec. are used for the material immediately below the crust. This crustal model is compared with structures obtained from short-period Love wave dispersion across other Pacific paths and with results of refraction studies.


2020 ◽  
Vol 223 (3) ◽  
pp. 1741-1757
Author(s):  
S Earp ◽  
A Curtis ◽  
X Zhang ◽  
F Hansteen

SUMMARY Surface wave tomography uses measured dispersion properties of surface waves to infer the spatial distribution of subsurface properties such as shear wave velocities. These properties can be estimated vertically below any geographical location at which surface wave dispersion data are available. As the inversion is significantly non-linear, Monte Carlo methods are often used to invert dispersion curves for shear wave velocity profiles with depth to give a probabilistic solution. Such methods provide uncertainty information but are computationally expensive. Neural network (NN) based inversion provides a more efficient way to obtain probabilistic solutions when those solutions are required beneath many geographical locations. Unlike Monte Carlo methods, once a network has been trained it can be applied rapidly to perform any number of inversions. We train a class of NNs called mixture density networks (MDNs), to invert dispersion curves for shear wave velocity models and their non-linearized uncertainty. MDNs are able to produce fully probabilistic solutions in the form of weighted sums of multivariate analytic kernels such as Gaussians, and we show that including data uncertainties as additional inputs to the MDN gives substantially more reliable velocity estimates when data contains significant noise. The networks were applied to data from the Grane field in the Norwegian North sea to produce shear wave velocity maps at several depth levels. Post-training we obtained probabilistic velocity profiles with depth beneath 26 772 locations to produce a 3-D velocity model in 21 s on a standard desktop computer. This method is therefore ideally suited for rapid, repeated 3-D subsurface imaging and monitoring.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. E183-E190 ◽  
Author(s):  
Xiao-Ming Tang ◽  
Douglas J. Patterson

We have developed a novel constrained inversion method for estimating a radial shear-wave velocity profile away from the wellbore using dipole acoustic logging data and have analyzed the effect of the radial velocity changes on dipole-flexural-wave dispersion characteristics. The inversion of the dispersion data to estimate the radial changes is inherently a nonunique problem because changing the degree of variation or the radial size of the variation zone can produce similar wave-dispersion characteristics. Nonuniqueness can be solved by developing a constrained inversion method. This is done by constraining the high-frequency portion of the model dispersion curve with another curve calculated using the near-borehole velocity. The constraint condition is based on the physical principle that a high-frequency dipole wave has a shallow penetration depth and is therefore sensitive to the near-borehole shear-wave velocity. We have validated the result of the constrained inversion with synthetic data testing. Combining the new inversion method with four-component crossed-dipole anisotropy processing obtains shear radial profiles in fast and slow shear polarization directions. In a sandstone formation, the fast and slow shear-wave profiles show substantial differences caused by the near-borehole stress field, demonstrating the ability of the technique to obtain radial and azimuthal geomechanical property changes near the wellbore.


2020 ◽  
Vol 91 (3) ◽  
pp. 1738-1751
Author(s):  
Jing Hu ◽  
Hongrui Qiu ◽  
Haijiang Zhang ◽  
Yehuda Ben-Zion

Abstract We present a new algorithm for derivations of 1D shear-wave velocity models from surface-wave dispersion data using convolutional neural networks (CNNs). The technique is applied for continental China and the plate boundary region in southern California. Different CNNs are designed for these two regions and are trained using theoretical Rayleigh-wave phase and group velocity images computed from reference 1D VS models. The methodology is tested with 3260 phase–group images for continental China and 4160 phase–group images for southern California. The conversions of these images to velocity profiles take ∼23  s for continental China and ∼30  s for southern California on a personal laptop with the NVIDIA GeForce GTX 1060 core and a memory of 6 GB. The results obtained by the CNNs show high correlation with previous studies using conventional methods. The effectiveness of the CNN technique makes this fast method an important alternative for deriving shear-wave velocity models from large datasets of surface-wave dispersion data.


Sign in / Sign up

Export Citation Format

Share Document