scholarly journals 3D time-domain induced polarization tomography: a new approach based on a source current density formulation

Author(s):  
A Soueid Ahmed ◽  
A Revil
Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. D345-D357 ◽  
Author(s):  
Deqiang Mao ◽  
André Revil

The secondary voltage associated with time-domain induced polarization data of disseminated metallic particles (such as pyrite and magnetite) in a porous material can be treated as a transient self-potential problem. This self-potential field is associated with the generation of a secondary-source current density. This source current density is proportional to the gradient of the chemical potentials of the [Formula: see text]- and [Formula: see text]-charge carriers in the metallic particles or ionic charge carriers in the pore water including in the electrical double layer coating the surface of the metallic grains. This new way to treat the secondary voltages offers two advantages with respect to the classical approach. The first is a gain in terms of acquisition time. Indeed, the target can be illuminated with a few primary current sources, all the other electrodes being used simultaneously to record the secondary voltage distribution. The second advantage is with respect to the inversion of the obtained data. Indeed, the secondary (source) current is linearly related to the secondary voltage. Therefore, the inverse problem of inverting the secondary voltages is linear with respect to the source current density, and the inversion can be done in a single iteration. Several iterations are, however, required to compact the source current density distribution, still obtaining a tomogram much faster than inverting the apparent chargeability data using the classical Gauss-Newton approach. We have performed a sandbox experiment with pyrite grains locally mixed to sand at a specific location in the sandbox to demonstrate these new concepts. A method initially developed for self-potential tomography is applied to the inversion of the secondary voltages in terms of source current distribution. The final result compares favorably with the classical inversion of the time-domain induced polarization data in terms of chargeability, but it is much faster to perform.


1995 ◽  
Vol 17 (4) ◽  
pp. 282-290 ◽  
Author(s):  
G.C. Filligoi ◽  
L. Capitanio ◽  
F. Babiloni ◽  
L. Fattorini ◽  
A. Urbano ◽  
...  

Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 487 ◽  
Author(s):  
Aristeidis Nivorlis ◽  
Torleif Dahlin ◽  
Matteo Rossi ◽  
Nikolas Höglund ◽  
Charlotte Sparrenbom

Soil contamination is a widespread problem and action needs to be taken in order to prevent damage to the groundwater and the life around the contaminated sites. In Sweden, it is estimated that more than 80,000 sites are potentially contaminated, and therefore, there is a demand for investigations and further treatment of the soil. In this paper, we present the results from a methodology applied in a site contaminated with chlorinated solvents, for characterization of the contamination in order to plan the remediation and to follow-up the initial step of in-situ remediation in an efficient way. We utilized the results from three different methods; membrane interface probe for direct measurement of the contaminant concentrations; seismic refraction tomography for investigating the depth to the bedrock interface; and direct current resistivity and time-domain induced polarization tomography to acquire a high-resolution imaging of the electrical properties of the subsurface. The results indicate that our methodology is very promising in terms of site characterization, and furthermore, has great potential for real-time geophysical monitoring of contaminated sites in the future.


2017 ◽  
Vol 15 (6) ◽  
pp. 657-667 ◽  
Author(s):  
Matteo Rossi ◽  
Per-Ivar Olsson ◽  
Sara Johanson ◽  
Gianluca Fiandaca ◽  
Daniel Preis Bergdahl ◽  
...  

Geophysics ◽  
2010 ◽  
Vol 75 (4) ◽  
pp. WA17-WA25 ◽  
Author(s):  
P. Martínez-Pagán ◽  
A. Jardani ◽  
A. Revil ◽  
A. Haas

Nonintrusively monitoring the spread of contaminants in real time with a geophysical method is an important task in hydrogeophysics. We have developed a sandbox experiment showing that the self-potential method can locate both the source of leakage and the front of a contaminant plume. We monitored the leakage of a plume of salty water from a hole at the bottom of a small tank located at the top of a main sandbox. Initially, the sand was saturated by tap water. At a given time, a hole was opened at the bottom of the tank, allowing the salty water to migrate by diffusion and buoyancy-driven flow in the main sandbox. The bottom of the sandbox contained a network of 32 nonpolarizing silver-silver chloride electrodes with amplifiers, connected to a multichannel voltmeter. The self-potential response associated withthe migration of the salt plume in the sandbox was recorded over time. A self-potential anomaly was observed with amplitude varying from a few millivolts at the start of the leak to a few tens of millivolts after a few minutes. The self-potential data were inverted using a time-lapse tomographic algorithm to reconstruct the position of the volumetric source current density over time. A positive volumetric source current density was associated with the position of the leak at the bottom of the leaking tank, whereas a negative volumetric source current density was associated with the salinity front moving down inside the sandbox. These poles were well reproduced by performing a finite-element simulation of the problem. Using this information, we estimated the speed of the salt plume sinking inside the sandbox. Therefore, the self-potential method can be used to track, in real time, the position of the front of a contaminant plume in a porous material.


Sign in / Sign up

Export Citation Format

Share Document