scholarly journals The role of Zn2+, dimerization and N-glycosylation in the interaction of Auxin-Binding Protein 1 (ABP1) with different auxins

Glycobiology ◽  
2017 ◽  
Vol 27 (12) ◽  
pp. 1109-1119 ◽  
Author(s):  
Cibele Tesser da Costa ◽  
Conrado Pedebos ◽  
Hugo Verli ◽  
Arthur Germano Fett-Neto
2002 ◽  
Vol 28 (6) ◽  
pp. 607-617 ◽  
Author(s):  
Jin-Gui Chen ◽  
Shoji Shimomura ◽  
Folke Sitbon ◽  
Göran Sandberg ◽  
Alan M Jones

Botany ◽  
2012 ◽  
Vol 90 (10) ◽  
pp. 990-1006 ◽  
Author(s):  
Dejana Jurišić-Knežev ◽  
Mária Čudejková ◽  
David Zalabák ◽  
Marta Hlobilová ◽  
Jakub Rolčík ◽  
...  

In maize, at least five auxin-binding proteins (ABPs) have been identified, yet their functions remain unclear. The present study reports the use of maize abp1, abp4, and abp1abp4 mutants to investigate the role of ABPs during maize growth and development. Single and double abp mutant plants grown in a greenhouse differ from the wild type (WT) in their leaf declination and leaf blade growth. The effect of the dark (D), blue light (BL), red light (RL), and exogenous auxin on the development of mutant seedlings was also studied. Relative to WT, etiolated mutant seedlings were shorter and showed a reduced responsiveness to exogenous auxin. In BL or RL, the responsiveness of maize seedlings to auxin was distinctly less than in D. The reducing effect of light on seedling responsiveness to auxin is mediated at least by phytochromes. The suppression of ABP1 and (or) ABP4 led to a distinct accumulation of free indole-3-acetic acid (IAA) in etiolated and light-grown seedling organs. We concluded that ABP1 and ABP4 participate in the growth of maize seedlings, mediate seedling responses to auxin, and interact with light signaling pathway(s). We also deduce a functional interaction between ABP1 and ABP4, which is that the relationship between them is light-, organ- and response-dependent.


Planta ◽  
1997 ◽  
Vol 202 (3) ◽  
pp. 313-323 ◽  
Author(s):  
J. Henderson ◽  
J. M. Bauly ◽  
D. A. Ashford ◽  
S. C. Oliver ◽  
C. R. Hawes ◽  
...  

1993 ◽  
Vol 102 (1) ◽  
pp. 29-34 ◽  
Author(s):  
J. Bilang ◽  
H. Macdonald ◽  
P. J. King ◽  
A. Sturm

2021 ◽  
Vol 8 (3) ◽  
pp. 741-748
Author(s):  
Farah Afiqah Baharuddin ◽  
Zhan Xuan Khong ◽  
Zamri Zainal ◽  
Noor Liyana Sukiran

Auxin Binding Protein 57 (ABP57) is one of the molecular components involved in rice response to abiotic stress. The ABP57 gene encodes an auxin receptor which functions in activating the plasma membrane H+-ATPase. Biochemical properties of ABP57 have been characterized; however, the function of ABP57, particularly on stress and hormone responses is still limited. This study was conducted to understand the regulation of ABP57 expression under abiotic stress. Thus, in silico identification of cis-acting regulatory elements (CAREs) in the promoter region of ABP57 was performed. Several motifs and transcription factor binding site (TFBS) that are involved in abiotic stress such as ABRE, DRE, AP2/EREBP, WRKY and NAC were identified. Next, expression analysis of ABP57 under drought, salt, auxin (IAA) and abscisic acid (ABA) was conducted by reverse transcription-PCR (RT-PCR) to verify the effect of these treatments on ABP57 transcript level. ABP57 was expressed at different levels in the shoot and root under drought conditions, and its expression was increased under IAA and ABA treatments. Moreover, our results showed that ABP57 expression in the root was more responsive to drought, auxin and ABA treatments compared to its transcript in the shoot. This finding suggests that ABP57 is a drought-responsive gene and possibly regulated by IAA and ABA.


Sign in / Sign up

Export Citation Format

Share Document