exogenous auxin
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 18)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
pp. 259-265
Author(s):  
Nina Petrovna Kovalevskaya

The paper shows the effect of nitrogen nutrition, exogenous auxin, and rhizosphere auxin-synthesizing microorganisms on the variability of the composition of fatty acids (FA) in the vegetative organs of spring wheat. The object of the study was seedlings of spring soft wheat Triticum aestivum L. The determination of FAs was carried out by gas chromatography with mass spectrometry (GC-MS). Analysis of FAs showed that in the control variants (without auxin), nitrogen nutrition conditions did not affect the localization of polyunsaturated FAs in vegetative organs; the maximum content of triene FAs was observed in leaves of 48.30% (N-deficient variant) and 44.8% (NO-3-variant ) and the absence of these FAs in the roots. It was found that in the presence of nitrates, the proportion of unsaturated FAs in the leaves and roots of wheat decreases. The use of exogenous auxin (5–50 μg/ml) in the early stages of ontogenesis leads to an increase in the amount of saturated (palmitic and stearic) acids and a decrease in unsaturated acids in vegetative organs, regardless of the conditions of nitrogen nutrition. During the introduction of spring wheat seedlings by auxin-synthesizing microorganisms, it was noted that nitrogen-fixing bacteria affect the leaves of plants most effectively, the content of saturated FAs increases by 72%, and only 16% increases in these FAs in the leaves of nitrate-reducing microorganisms.


2021 ◽  
Vol 22 (12) ◽  
pp. 6294
Author(s):  
Ricardo I. Castro ◽  
Ana González-Feliu ◽  
Marcelo Muñoz-Vera ◽  
Felipe Valenzuela-Riffo ◽  
Carolina Parra-Palma ◽  
...  

The role of auxin in the fruit-ripening process during the early developmental stages of commercial strawberry fruits (Fragaria x ananassa) has been previously described, with auxin production occurring in achenes and moving to the receptacle. Additionally, fruit softening is a consequence of the depolymerization and solubilization of cell wall components produced by the action of a group of proteins and enzymes. The aim of this study was to compare the effect of exogenous auxin treatment on the physiological properties of the cell wall-associated polysaccharide contents of strawberry fruits. We combined thermogravimetric (TG) analysis with analyses of the mRNA abundance, enzymatic activity, and physiological characteristics related to the cell wall. The samples did not show a change in fruit firmness at 48 h post-treatment; by contrast, we showed changes in the cell wall stability based on TG and differential thermogravimetric (DTG) analysis curves. Less degradation of the cell wall polymers was observed after auxin treatment at 48 h post-treatment. The results of our study indicate that auxin treatment delays the cell wall disassembly process in strawberries.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 850
Author(s):  
Bobo Wang ◽  
Xiuli Zhu ◽  
Xiaoli Guo ◽  
Xuejiao Qi ◽  
Fan Feng ◽  
...  

Nitrate (NO3-) plays a pivotal role in stimulating lateral root (LR) formation and growth in plants. However, the role of NO3- in modulating rice LR formation and the signalling pathways involved in this process remain unclear. Phenotypic and genetic analyses of rice were used to explore the role of strigolactones (SLs) and auxin in NO3--modulated LR formation in rice. Compared with ammonium (NH4+), NO3- stimulated LR initiation due to higher short-term root IAA levels. However, this stimulation vanished after 7 d, and the LR density was reduced, in parallel with the auxin levels. Application of the exogenous auxin α-naphthylacetic acid to NH4+-treated rice plants promoted LR initiation to levels similar to those under NO3- at 7 d; conversely, the application of the SL analogue GR24 to NH4+-treated rice inhibited LR initiation to levels similar to those under NO3- supply by reducing the root auxin levels at 14 d. D10 and D14 mutations caused loss of sensitivity of the LR formation response to NO3-. The application of NO3- and GR24 downregulated the transcription of PIN-FORMED 2(PIN2), an auxin efflux carrier in roots. LR number and density in pin2 mutant lines were insensitive to NO3- treatment. These results indicate that NO3- modulates LR formation by affecting the auxin response and transport in rice, with the involvement of SLs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247666
Author(s):  
Yue Gao ◽  
Qin-Mei Wang ◽  
Qinxia An ◽  
Jianguo Cui ◽  
Yongbin Zhou ◽  
...  

Lycium ruthenicum is an excellent eco-economic shrub. Numerous researches have been conducted for the function of its fruits but scarcely focused on the somaclonal variation and DNA methylation. An efficient micropropagation protocol from leaves and stems of L. ruthenicum was developed in this study, in which not only the leaf explants but also the stem explants of L. ruthenicum were dedifferentiated and produced adventitious buds/multiple shoots on one type of medium. Notably, the efficient indirect organogenesis of stem explants was independent of exogenous auxin, which is contrary to the common conclusion that induction and proliferation of calli is dependent on exogenous auxin. We proposed that sucrose supply might be the crucial regulator of stem callus induction and proliferation of L. ruthenicum. Furthermore, results of methylation-sensitive amplified polymorphism (MSAP) showed that DNA methylation somaclonal variation (MSV) of CNG decreased but that of CG increased after acclimatization. Three types of micropropagated plants (from leaf calli, stem calli and axillary buds) were epigenetically diverged more from each other after acclimatization and the ex vitro micropropagated plants should be selected to determine the fidelity. In summary, plants micropropagated from axillary buds and leaves of L. ruthenicum was more fidelity and might be suitable for preservation and propagation of elite germplasm. Also, leaf explants should be used in transformation. Meanwhile, plants from stem calli showed the highest MSV and might be used in somaclonal variation breeding. Moreover, one MSV hotspot was found based on biological replicates. The study not only provided foundations for molecular breeding, somaclonal variation breeding, preservation and propagation of elite germplasm, but also offered clues for further revealing novel mechanisms of both stem-explant dedifferentiation and MSV of L. ruthenicum.


2021 ◽  
Vol 13 (1) ◽  
pp. 17-23
Author(s):  
Gina Aliya Soph ◽  
Shinta Hartanto
Keyword(s):  

Author(s):  
A. S. Kiryushkin ◽  
E. D. Guseva ◽  
E. L. Ilina ◽  
K. N. Demchenko

Identification of the cucumber DRO clade in IGT protein family was performed using phylogenetic analysis. Relative expression to the exogenous auxin and promoter tissue activity of the DRO genes were studied.


Sign in / Sign up

Export Citation Format

Share Document