scholarly journals DMD carrier model with mosaic dystrophin expression in the heart reveals complex vulnerability to myocardial injury

2020 ◽  
Vol 29 (6) ◽  
pp. 944-954
Author(s):  
Tatyana A Meyers ◽  
Jackie A Heitzman ◽  
DeWayne Townsend

Abstract Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease that causes progressive muscle wasting and cardiomyopathy. This X-linked disease results from mutations of the DMD allele on the X-chromosome resulting in the loss of expression of the protein dystrophin. Dystrophin loss causes cellular dysfunction that drives the loss of healthy skeletal muscle and cardiomyocytes. As gene therapy strategies strive toward dystrophin restoration through micro-dystrophin delivery or exon skipping, preclinical models have shown that incomplete restoration in the heart results in heterogeneous dystrophin expression throughout the myocardium. This outcome prompts the question of how much dystrophin restoration is sufficient to rescue the heart from DMD-related pathology. Female DMD carrier hearts can shed light on this question, due to their mosaic cardiac dystrophin expression resulting from random X-inactivation. In this work, a dystrophinopathy carrier mouse model was derived by breeding male or female dystrophin-null mdx mice with a wild type mate. We report that these carrier hearts are significantly susceptible to injury induced by one or multiple high doses of isoproterenol, despite expressing ~57% dystrophin. Importantly, only carrier mice with dystrophic mothers showed mortality after isoproterenol. These findings indicate that dystrophin restoration in approximately half of the heart still allows for marked vulnerability to injury. Additionally, the discovery of divergent stress-induced mortality based on parental origin in mice with equivalent dystrophin expression underscores the need for better understanding of the epigenetic, developmental, and even environmental factors that may modulate vulnerability in the dystrophic heart.

2008 ◽  
Vol 8 (1) ◽  
pp. 35 ◽  
Author(s):  
Jason H Williams ◽  
Rebecca C Schray ◽  
Shashank R Sirsi ◽  
Gordon J Lutz

2021 ◽  
pp. 1-20
Author(s):  
James S. Novak ◽  
Rita Spathis ◽  
Utkarsh J. Dang ◽  
Alyson A. Fiorillo ◽  
Ravi Hindupur ◽  
...  

Recently, the Food and Drug Administration granted accelerated approvals for four exon skipping therapies –Eteplirsen, Golodirsen, Viltolarsen, and Casimersen –for Duchenne Muscular Dystrophy (DMD). However, these treatments have only demonstrated variable and largely sub-therapeutic levels of restored dystrophin protein in DMD patients, limiting their clinical impact. To better understand variable protein expression and the behavior of truncated dystrophin protein in vivo, we assessed turnover dynamics of restored dystrophin and dystroglycan complex (DGC) proteins in mdx mice after exon skipping therapy, compared to those dynamics in wild type mice, using a targeted, highly-reproducible and sensitive, in vivo stable isotope labeling mass spectrometry approach in multiple muscle tissues. Through statistical modeling, we found that restored dystrophin protein exhibited altered stability and slower turnover in treated mdx muscle compared with that in wild type muscle (∼44 d vs. ∼24 d, respectively). Assessment of mRNA transcript stability (quantitative real-time PCR, droplet digital PCR) and dystrophin protein expression (capillary gel electrophoresis, immunofluorescence) support our dystrophin protein turnover measurements and modeling. Further, we assessed pathology-induced muscle fiber turnover through bromodeoxyuridine (BrdU) labeling to model dystrophin and DGC protein turnover in the context persistent fiber degeneration. Our findings reveal sequestration of restored dystrophin protein after exon skipping therapy in mdx muscle leading to a significant extension of its half-life compared to the dynamics of full-length dystrophin in normal muscle. In contrast, DGC proteins show constant turnover attributable to myofiber degeneration and dysregulation of the extracellular matrix (ECM) in dystrophic muscle. Based on our results, we demonstrate the use of targeted mass spectrometry to evaluate the suitability and functionality of restored dystrophin isoforms in the context of disease and propose its use to optimize alternative gene correction strategies in development for DMD.


2006 ◽  
Vol 13 ◽  
pp. S346
Author(s):  
Elise Peltekian ◽  
Karine Ros ◽  
Aurelie Goyenvalle ◽  
Carole Gruszczynski ◽  
Cyrille Vaillend ◽  
...  

2011 ◽  
Vol 30 (3) ◽  
pp. 322-333 ◽  
Author(s):  
Peter Sazani ◽  
Kirk P. Van Ness ◽  
Doreen L. Weller ◽  
Duane Poage ◽  
Keith Nelson ◽  
...  

AVI-4658 is a phosphorodiamidate morpholino oligomer (PMO) designed to induce skipping of dystrophin exon 51 and restore its expression in patients with Duchenne muscular dystrophy (DMD). Preclinically, restoration of dystrophin in the dystrophic mdx mouse model requires skipping of exon 23, achieved with the mouse-specific PMO, AVI-4225. Herein, we report the potential toxicological consequences of exon skipping and dystrophin restoration in mdx mice using AVI-4225. We also evaluated the toxicological effects of AVI-4658 in both mdx and wild-type mice. In both studies, animals were dosed once weekly for 12 weeks up to the maximum feasible dose of 960 mg/kg per injection. Both AVI-4658 and AVI-4225 were well-tolerated at all doses. Findings in AVI-4225-treated animals were generally limited to mild renal tubular basophilia/vacuolation, without any significant changes in renal function and with evidence of reversing. No toxicity associated with the mechanism of action of AVI-4225 in a dystrophic animal was observed.


2000 ◽  
Vol 148 (5) ◽  
pp. 985-996 ◽  
Author(s):  
Q.L. Lu ◽  
G.E. Morris ◽  
S.D. Wilton ◽  
T. Ly ◽  
O.V. Artem'yeva ◽  
...  

Conventionally, nonsense mutations within a gene preclude synthesis of a full-length functional protein. Obviation of such a blockage is seen in the mdx mouse, where despite a nonsense mutation in exon 23 of the dystrophin gene, occasional so-called revertant muscle fibers are seen to contain near-normal levels of its protein product. Here, we show that reversion of dystrophin expression in mdx mice muscle involves unprecedented massive loss of up to 30 exons. We detected several alternatively processed transcripts that could account for some of the revertant dystrophins and could not detect genomic deletion from the region commonly skipped in revertant dystrophin. This, together with exon skipping in two noncontiguous regions, favors aberrant splicing as the mechanism for the restoration of dystrophin, but is hard to reconcile with the clonal idiosyncrasy of revertant dystrophins. Revertant dystrophins retain functional domains and mediate plasmalemmal assembly of the dystrophin-associated glycoprotein complex. Physiological function of revertant fibers is demonstrated by the clonal growth of revertant clusters with age, suggesting that revertant dystrophin could be used as a guide to the construction of dystrophin expression vectors for individual gene therapy. The dystrophin gene in the mdx mouse provides a favored system for study of exon skipping associated with nonsense mutations.


Sign in / Sign up

Export Citation Format

Share Document