scholarly journals Loss of Cln5 leads to altered Gad1 expression and deficits in interneuron development in mice

2019 ◽  
Vol 28 (19) ◽  
pp. 3309-3322 ◽  
Author(s):  
Yajuvinder Singh ◽  
Henri Leinonen ◽  
Feroze Fazaludeen ◽  
Merja Jaronen ◽  
Debbie Guest ◽  
...  

Abstract The Finnish-variant late infantile neuronal ceroid lipofuscinosis, also known as CLN5 disease, is caused by mutations in the CLN5 gene. Cln5 is strongly expressed in the developing brain and expression continues into adulthood. CLN5, a protein of unknown function, is implicated in neurodevelopment but detailed investigation is lacking. Using Cln5−/− embryos of various ages and cells harvested from Cln5−/− brains we investigated the hitherto unknown role of Cln5 in the developing brain. Loss of Cln5 results in neuronal differentiation deficits and delays in interneuron development during in utero period. Specifically, the radial thickness of dorsal telencephalon was significantly decreased in Cln5−/− mouse embryos at embryonic day 14.5 (E14.5), and expression of Tuj1, an important neuronal marker during development, was down-regulated. An interneuron marker calbindin and a mitosis marker p-H3 showed down-regulation in ganglionic eminences. Neurite outgrowth was compromised in primary cortical neuronal cultures derived from E16 Cln5−/− embryos compared with WT embryos. We show that the developmental deficits of interneurons may be linked to increased levels of the repressor element 1-silencing transcription factor, which we report to bind to glutamate decarboxylase (Gad1), which encodes GAD67, a rate-limiting enzyme in the production of gamma-aminobutyric acid (GABA). Indeed, adult Cln5−/− mice presented deficits in hippocampal parvalbumin-positive interneurons. Furthermore, adult Cln5−/− mice presented deficits in hippocampal parvalbumin-positive interneurons and showed age-independent cortical hyper excitability as measured by electroencephalogram and auditory-evoked potentials. This study highlights the importance of Cln5 in neurodevelopment and suggests that in contrast to earlier reports, CLN5 disease is likely to develop during embryonic stages.

2014 ◽  
Vol 42 (5) ◽  
pp. 1282-1285 ◽  
Author(s):  
Charles Shyng ◽  
Mark S. Sands

Infantile neuronal ceroid lipofuscinosis (INCL; infantile Batten disease) is an inherited paediatric neurodegenerative disease. INCL is caused by a deficiency in the lysosomal enzyme palmitoyl-protein thioesterase-1 (PPT1) and is thus classified as a lysosomal storage disease. Pathological examination of both human and murine INCL brains reveals progressive, widespread neuroinflammation. In fact, astrocyte activation appears to be the first histological sign of disease. However, the role of astrocytosis in INCL was poorly understood. The hallmark of astrocyte activation is the up-regulation of intermediate filaments, such as glial fibrillary acidic protein (GFAP) and vimentin. The role of astrocytosis in INCL was studied in a murine model lacking PPT1 and the intermediate filaments GFAP and vimentin (triple-knockout). This murine model of INCL with attenuated astrocytosis had an exacerbated pathological and clinical phenotype. The triple-knockout mouse had a significantly shortened lifespan, and accelerated cellular and humoural neuroinflammatory response compared with the parental PPT1−/− mouse. The data obtained from the triple-knockout mouse strongly suggest that astrocyte activation plays a beneficial role in early INCL disease progression. A more thorough understanding of the glial responses to lysosomal enzyme deficiencies and the accumulation of undergraded substrates will be crucial to developing effective therapeutics.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chang-geng Song ◽  
Xin Kang ◽  
Fang Yang ◽  
Wan-qing Du ◽  
Jia-jia Zhang ◽  
...  

Abstract In mature mammalian brains, the endocannabinoid system (ECS) plays an important role in the regulation of synaptic plasticity and the functioning of neural networks. Besides, the ECS also contributes to the neurodevelopment of the central nervous system. Due to the increase in the medical and recreational use of cannabis, it is inevitable and essential to elaborate the roles of the ECS on neurodevelopment. GABAergic interneurons represent a group of inhibitory neurons that are vital in controlling neural network activity. However, the role of the ECS in the neurodevelopment of GABAergic interneurons remains to be fully elucidated. In this review, we provide a brief introduction of the ECS and interneuron diversity. We focus on the process of interneuron development and the role of ECS in the modulation of interneuron development, from the expansion of the neural stem/progenitor cells to the migration, specification and maturation of interneurons. We further discuss the potential implications of the ECS and interneurons in the pathogenesis of neurological and psychiatric disorders, including epilepsy, schizophrenia, major depressive disorder and autism spectrum disorder.


1999 ◽  
Vol 19 (7) ◽  
pp. 685-688 ◽  
Author(s):  
Juhani Rapola ◽  
Jaana Lähdetie ◽  
Juha Isosomppi ◽  
Päivi Helminen ◽  
Maila Penttinen ◽  
...  

2008 ◽  
Vol 62 (6) ◽  
pp. 2325-2332 ◽  
Author(s):  
Yi-Hsuan Lee ◽  
David L. Deupree ◽  
Shine-Chi Chen ◽  
Lung-Sen Kao ◽  
Jang-Yen Wu

Sign in / Sign up

Export Citation Format

Share Document