scholarly journals Dynamics of the transcriptional landscape during human fetal testis and ovary development

2020 ◽  
Vol 35 (5) ◽  
pp. 1099-1119
Author(s):  
Estelle Lecluze ◽  
Antoine D Rolland ◽  
Panagiotis Filis ◽  
Bertrand Evrard ◽  
Sabrina Leverrier-Penna ◽  
...  

Abstract STUDY QUESTION Which transcriptional program triggers sex differentiation in bipotential gonads and downstream cellular events governing fetal testis and ovary development in humans? SUMMARY ANSWER The characterization of a dynamically regulated protein-coding and non-coding transcriptional landscape in developing human gonads of both sexes highlights a large number of potential key regulators that show an early sexually dimorphic expression pattern. WHAT IS KNOWN ALREADY Gonadal sex differentiation is orchestrated by a sexually dimorphic gene expression program in XX and XY developing fetal gonads. A comprehensive characterization of its non-coding counterpart offers promising perspectives for deciphering the molecular events underpinning gonad development and for a complete understanding of the etiology of disorders of sex development in humans. STUDY DESIGN, SIZE, DURATION To further investigate the protein-coding and non-coding transcriptional landscape during gonad differentiation, we used RNA-sequencing (RNA-seq) and characterized the RNA content of human fetal testis (N = 24) and ovaries (N = 24) from 6 to 17 postconceptional week (PCW), a key period in sex determination and gonad development. PARTICIPANTS/MATERIALS, SETTING, METHODS First trimester fetuses (6–12 PCW) and second trimester fetuses (13–14 and 17 PCW) were obtained from legally induced normally progressing terminations of pregnancy. Total RNA was extracted from whole human fetal gonads and sequenced as paired-end 2 × 50 base reads. Resulting sequences were mapped to the human genome, allowing for the assembly and quantification of corresponding transcripts. MAIN RESULTS AND THE ROLE OF CHANCE This RNA-seq analysis of human fetal testes and ovaries at seven key developmental stages led to the reconstruction of 22 080 transcripts differentially expressed during testicular and/or ovarian development. In addition to 8935 transcripts displaying sex-independent differential expression during gonad development, the comparison of testes and ovaries enabled the discrimination of 13 145 transcripts that show a sexually dimorphic expression profile. The latter include 1479 transcripts differentially expressed as early as 6 PCW, including 39 transcription factors, 40 long non-coding RNAs and 20 novel genes. Despite the use of stringent filtration criteria (expression cut-off of at least 1 fragment per kilobase of exon model per million reads mapped, fold change of at least 2 and false discovery rate adjusted P values of less than <1%), the possibility of assembly artifacts and of false-positive differentially expressed transcripts cannot be fully ruled out. LARGE-SCALE DATA Raw data files (fastq) and a searchable table (.xlss) containing information on genomic features and expression data for all refined transcripts have been submitted to the NCBI GEO under accession number GSE116278. LIMITATIONS, REASONS FOR CAUTION The intrinsic nature of this bulk analysis, i.e. the sequencing of transcripts from whole gonads, does not allow direct identification of the cellular origin(s) of the transcripts characterized. Potential cellular dilution effects (e.g. as a result of distinct proliferation rates in XX and XY gonads) may account for a few of the expression profiles identified as being sexually dimorphic. Finally, transcriptome alterations that would result from exposure to pre-abortive drugs cannot be completely excluded. Although we demonstrated the high quality of the sorted cell populations used for experimental validations using quantitative RT-PCR, it cannot be totally excluded that some germline expression may correspond to cell contamination by, for example, macrophages. WIDER IMPLICATIONS OF THE FINDINGS For the first time, this study has led to the identification of 1000 protein-coding and non-coding candidate genes showing an early, sexually dimorphic, expression pattern that have not previously been associated with sex differentiation. Collectively, these results increase our understanding of gonad development in humans, and contribute significantly to the identification of new candidate genes involved in fetal gonad differentiation. The results also provide a unique resource that may improve our understanding of the fetal origin of testicular and ovarian dysgenesis syndromes, including cryptorchidism and testicular cancers. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the French National Institute of Health and Medical Research (Inserm), the University of Rennes 1, the French School of Public Health (EHESP), the Swiss National Science Foundation [SNF n° CRS115_171007 to B.J.], the French National Research Agency [ANR n° 16-CE14-0017-02 and n° 18-CE14-0038-02 to F.C.], the Medical Research Council [MR/L010011/1 to P.A.F.] and the European Community’s Seventh Framework Programme (FP7/2007-2013) [under grant agreement no 212885 to P.A.F.] and from the European Union’s Horizon 2020 Research and Innovation Programme [under grant agreement no 825100 to P.A.F. and S.M.G.]. There are no competing interests related to this study.

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1042
Author(s):  
Huapu Chen ◽  
Zhiyuan Li ◽  
Yaorong Wang ◽  
Hai Huang ◽  
Xuewei Yang ◽  
...  

Diodon hystrix is a new and emerging aquaculture species in south China. However, due to the lack of understanding of reproductive regulation, the management of breeding and reproduction under captivity remains a barrier for the commercial aquaculture of D. hystrix. More genetic information is needed to identify genes critical for gonadal development. Here, the first gonadal transcriptomes of D. hystrix were analyzed and 151.89 million clean reads were generated. All reads were assembled into 57,077 unigenes, and 24,574 could be annotated. By comparing the gonad transcriptomes, 11,487 differentially expressed genes were obtained, of which 4599 were upregulated and 6888 were downregulated in the ovaries. Using enrichment analyses, many functional pathways were found to be associated with reproduction regulation. A set of sex-biased genes putatively involved in gonad development and gametogenesis were identified and their sexually dimorphic expression patterns were characterized. The detailed transcriptomic data provide a useful resource for further research on D. hystrix reproductive manipulation.


2019 ◽  
Vol 20 (11) ◽  
pp. 2705 ◽  
Author(s):  
Jian Zhang ◽  
Xiao Han ◽  
Jin Wang ◽  
Bing-Zheng Liu ◽  
Jin-Liang Wei ◽  
...  

Sea urchin (Mesocentrotus nudus) is an economically important mariculture species in China and the gonads are the solely edible parts to human. The molecular mechanisms of gonad development have attracted increasing attention in recent years. Although the nanos2 gene has been identified as a germ cell marker in several invertebrates, little is known about nanos2 in adult sea urchins. Hereinto, we report the characterization of Mnnano2, an M. nudus nanos2 homology gene. Mnnanos2 is a maternal factor and can be detected continuously during embryogenesis and early ontogeny. Real-time quantitative PCR (RT-qPCR) and section in situ hybridization (ISH) analysis revealed a dynamic and sexually dimorphic expression pattern of Mnnano2 in the gonads. Its expression reached the maximal level at Stage 2 along with the gonad development in both ovary and testis. In the ovary, Mnnanos2 is specifically expressed in germ cells. In contrast, Mnnanos2 is expressed in both nutritive phagocytes (NP) cells and male germ cells in testis. Moreover, knocking down of Mnnanos2 by means of RNA interference (RNAi) reduced nanos2 and boule expression but conversely increased the expression of foxl2. Therefore, our data suggest that Mnnanos2 may serve as a female germ cell marker during gametogenesis and provide chances to uncover its function in adult sea urchin.


2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Kai Jin ◽  
Qisheng Zuo ◽  
Jiuzhou Song ◽  
Yani Zhang ◽  
Guohong Chen ◽  
...  

Abstract Cytochrome P450 Family 19 SubFamily A member 1 (CYP19A1) gene encodes an aromatase which regulates the sexual differentiation in vertebrates by initiating and maintaining 17β-Estradiol (E2) synthesis. Here, we described the spatiotemporal expression pattern of CYP19A1 and its functional role in the embryonic gonad development in amphoteric chickens (Gallus gallus). Results showed that CYP19A1 exhibited a sexually dimorphic expression pattern in female gonads early at embryonic day 5.5 (HH 28) and robustly expressed within the cytoplasm in ovarian medullas. Most importantly, we induced the gonadal sex reversal by ectopically delivering the aromatase inhibitor (AI) or estradiol (E2) into chicken embryos. To further explore the role of CYP19A1 in chicken embryonic sexual differentiation, we successfully developed an effective method to deliver lentiviral particles with CYP19A1 manipulation into chicken embryos via embryonic intravascular injection. The analysis of interference and overexpression of CYP19A1 provided solid evidences that CYP19A1 is both necessary and sufficient to initiate sex differentiation toward female in chicken embryos. Collectively, this work demonstrates that CYP19A1 is a crucial sex differentiation gene in the embryonic development, which provides a foundation for understanding the mechanism of sex determination and differentiation in chickens.


2005 ◽  
Vol 72 (6) ◽  
pp. 1315-1323 ◽  
Author(s):  
Takeshi Takayama ◽  
Takuya Mishima ◽  
Miki Mori ◽  
Hong Jin ◽  
Hiroki Tsukamoto ◽  
...  

1990 ◽  
Vol 4 (8) ◽  
pp. 1235-1239 ◽  
Author(s):  
John A. Robertson ◽  
Lars-Arne Haldosén ◽  
Timothy J. J. Wood ◽  
Maureen K. Steed ◽  
Jan-Åke Gustafsson

Sign in / Sign up

Export Citation Format

Share Document