scholarly journals Energetic and exergetic studies of modified CO2 transcritical refrigeration cycles

Author(s):  
Omprakash S Patil ◽  
Shrikant A Shet ◽  
Manish Jadhao ◽  
Neeraj Agrawal

Abstract Thermodynamic analysis including energetic and exergetic analysis is carried out employing Engineering Equation Solver for the five modified cycles: dual expansion cycle, internal heat exchanger cycle, work recovery cycle, work recovery with internal heat exchanger cycle and vortex tube expansion cycle. Contours are developed to study the effect of gas cooler temperatures and evaporator temperatures on the system performance and optimum gas cooler pressure. The modified cycle with work recovery turbine offers relatively higher COP and higher exergetic efficiency with lower compressor discharge pressure. The exergy loss in compressor, gas cooler, throttle valve and vortex tube (VT) are considerably higher than that in internal heat exchanger (IHX), evaporator and turbine. It is observed that COP of modified cycle with VT is slightly less than that with IHX, whereas the cycle with work recovery turbine brings the highest COP with the improvement of 25% at the gas cooler exit temperature of 305 K and evaporator temperature of 248 K.

2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Nurettin Yamankaradeniz ◽  
Ali Husnu Bademlioglu ◽  
Omer Kaynakli

This study makes energy and exergy analysis of a sample organic Rankine cycle (ORC) with a heat exchanger which produces energy via a geothermal source with a temperature of 140 °C. R600a is preferred as refrigerant to be used in the cycle. The changes in exergy destructions (of irreversibility) and exergy efficiencies in each cycle element are calculated in the analyses made based on the effectiveness of heat exchanger used in cycle and evaporator temperature changing between 60 and 120 °C for fixed pinch point temperature differences in evaporator and condenser. Parameters showing system performance are assessed via second law approach. Effectiveness of heat exchanger and temperature of evaporator are taken into consideration within the scope of this study, and energy and exergy efficiencies of cycle are enhanced maximum 6.87% and 6.21% respectively. Similarly, exergy efficiencies of evaporator, heat exchanger, and condenser are increased 4%, 82%, and 1.57%, respectively, depending on the effectiveness of heat exchanger and temperature of evaporator.


2011 ◽  
Vol 52-54 ◽  
pp. 255-260 ◽  
Author(s):  
Ying Bai Xie ◽  
Kui Kui Cui ◽  
Zhi Chao Wang ◽  
Jian Lin Liu

The paper analyses CO2 trans-critical two stage compression refrigeration cycle with vortex tube expansion by thermodynamics method. And compare with CO2 trans-critical two stage compression refrigeration cycle with expansion value. The results show that in the calculated conditions of the paper, the performance of the cycle with vortex tube improves 2.4%~16.3% than the cycle with expansion value. The optimal discharge pressure maximizing COP of the cycle with vortex tube exists. With lower evaporating temperature or higher gas cooler exit temperature, COP of system decreases and COP improvement increases. The effect of cold fluid mass fraction on COP is not significant, but COP improvement increases more quickly with cold gas mass fraction increasing.


Author(s):  
V. Pérez-García ◽  
D. Méndez-Méndez ◽  
J.M. Belman-Flores ◽  
J.L. Rodríguez-Muñoz ◽  
J.J. Montes-Rodríguez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document