scholarly journals Increasing Endocannabinoid Levels in the Ventral Pallidum Restore Aberrant Dopamine Neuron Activity in the Subchronic PCP Rodent Model of Schizophrenia

2014 ◽  
Vol 18 (1) ◽  
pp. pyu035-pyu035 ◽  
Author(s):  
D. D. Aguilar ◽  
L. Chen ◽  
D. J. Lodge
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hannah B. Elam ◽  
Stephanie M. Perez ◽  
Jennifer J. Donegan ◽  
Daniel J. Lodge

AbstractPost-traumatic stress disorder (PTSD) is a prevalent condition affecting approximately 8% of the United States population and 20% of United States combat veterans. In addition to core symptoms of the disorder, up to 64% of individuals diagnosed with PTSD experience comorbid psychosis. Previous research has demonstrated a positive correlation between symptoms of psychosis and increases in dopamine transmission. We have recently demonstrated projections from the paraventricular nucleus of the thalamus (PVT) to the nucleus accumbens (NAc) can regulate dopamine neuron activity in the ventral tegmental area (VTA). Specifically, inactivation of the PVT leads to a reversal of aberrant dopamine system function and psychosis-like behavior. The PVT receives dense innervation from orexin containing neurons, therefore, targeting orexin receptors may be a novel approach to restore dopamine neuron activity and alleviate PTSD-associated psychosis. In this study, we induced stress-related pathophysiology in male Sprague Dawley rats using an inescapable foot-shock procedure. We observed a significant increase in VTA dopamine neuron population activity, deficits in sensorimotor gating, and hyperresponsivity to psychomotor stimulants. Administration of selective orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) antagonists (SB334867 and EMPA, respectively) or the FDA-approved, dual-orexin receptor antagonist, Suvorexant, were found to reverse stress-induced increases in dopamine neuron population activity. However, only Suvorexant and SB334867 were able to reverse deficits in behavioral corelates of psychosis. These results suggest that the orexin system may be a novel pharmacological target for the treatment of comorbid psychosis related to PTSD.


2014 ◽  
Vol 39 (12) ◽  
pp. 2788-2798 ◽  
Author(s):  
Romain Bourdy ◽  
María-José Sánchez-Catalán ◽  
Jennifer Kaufling ◽  
Judith J Balcita-Pedicino ◽  
Marie-José Freund-Mercier ◽  
...  

2018 ◽  
Vol 24 (1) ◽  
pp. 126-144 ◽  
Author(s):  
Fengjiao Sun ◽  
Yun Lei ◽  
Jingjing You ◽  
Chen Li ◽  
Linshan Sun ◽  
...  

Neuron ◽  
2020 ◽  
Vol 106 (5) ◽  
pp. 778-788.e6 ◽  
Author(s):  
Ana B. Fernandes ◽  
Joaquim Alves da Silva ◽  
Joana Almeida ◽  
Guohong Cui ◽  
Charles R. Gerfen ◽  
...  

2015 ◽  
Vol 114 (3) ◽  
pp. 1734-1745 ◽  
Author(s):  
Katherine Stuhrman ◽  
Aaron G. Roseberry

Dopamine is an essential neurotransmitter that plays an important role in a number of different physiological processes and disorders. There is substantial evidence that the neuropeptide neurotensin interacts with the mesolimbic dopamine system and can regulate dopamine neuron activity. In these studies we have used whole cell patch-clamp electrophysiology in brain slices from mice to examine how neurotensin regulates dopamine neuron activity by examining the effect of neurotensin on the inhibitory postsynaptic current generated by somatodendritic dopamine release (D2R IPSC) in ventral tegmental area (VTA) dopamine neurons. Neurotensin inhibited the D2R IPSC and activated an inward current in VTA dopamine neurons that appeared to be at least partially mediated by activation of a transient receptor potential C-type channel. Neither the inward current nor the inhibition of the D2R IPSC was affected by blocking PKC or calcium release from intracellular stores, and the inhibition of the D2R IPSC was greater with neurotensin compared with activation of other Gq-coupled receptors. Interestingly, the effects of neurotensin were not specific to D2R signaling as neurotensin also inhibited GABAB inhibitory postsynaptic currents in VTA dopamine neurons. Finally, the effects of neurotensin were significantly larger when intracellular Ca2+ was strongly buffered, suggesting that reduced intracellular calcium facilitates these effects. Overall these results suggest that neurotensin may inhibit the D2R and GABAB IPSCs downstream of receptor activation, potentially through regulation of G protein-coupled inwardly rectifying potassium channels. These studies provide an important advance in our understanding of dopamine neuron activity and how it is controlled by neurotensin.


Sign in / Sign up

Export Citation Format

Share Document