scholarly journals Super-resolution multi-reference alignment

Author(s):  
Tamir Bendory ◽  
Ariel Jaffe ◽  
William Leeb ◽  
Nir Sharon ◽  
Amit Singer

Abstract We study super-resolution multi-reference alignment, the problem of estimating a signal from many circularly shifted, down-sampled and noisy observations. We focus on the low SNR regime, and show that a signal in ${\mathbb{R}}^M$ is uniquely determined when the number $L$ of samples per observation is of the order of the square root of the signal’s length ($L=O(\sqrt{M})$). Phrased more informally, one can square the resolution. This result holds if the number of observations is proportional to $1/\textrm{SNR}^3$. In contrast, with fewer observations recovery is impossible even when the observations are not down-sampled ($L=M$). The analysis combines tools from statistical signal processing and invariant theory. We design an expectation-maximization algorithm and demonstrate that it can super-resolve the signal in challenging SNR regimes.

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S678-S678
Author(s):  
Yasuhiro Akazawa ◽  
Yasuhiro Katsura ◽  
Ryohei Matsuura ◽  
Piao Rishu ◽  
Ansar M D Ashik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document