Super-resolution multi-reference alignment
Abstract We study super-resolution multi-reference alignment, the problem of estimating a signal from many circularly shifted, down-sampled and noisy observations. We focus on the low SNR regime, and show that a signal in ${\mathbb{R}}^M$ is uniquely determined when the number $L$ of samples per observation is of the order of the square root of the signal’s length ($L=O(\sqrt{M})$). Phrased more informally, one can square the resolution. This result holds if the number of observations is proportional to $1/\textrm{SNR}^3$. In contrast, with fewer observations recovery is impossible even when the observations are not down-sampled ($L=M$). The analysis combines tools from statistical signal processing and invariant theory. We design an expectation-maximization algorithm and demonstrate that it can super-resolve the signal in challenging SNR regimes.