scholarly journals Compressible Euler equations on a sphere and elliptic–hyperbolic property

Author(s):  
Ian Holloway ◽  
Sivaguru S Sritharan

Abstract In this work, we systematically derive the governing equations of supersonic conical flow by projecting the 3D Euler equations onto the unit sphere. These equations result from taking the assumption of conical invariance on the 3D flow field. Under this assumption, the compressible Euler equations reduce to a system defined on the surface of the unit sphere. This compressible flow problem has been successfully used to study the steady supersonic flow past cones of arbitrary cross section by reducing the number of spatial dimensions from three down to two while still capturing many of the relevant 3D effects. In this paper, the powerful machinery of tensor calculus is utilized to avoid reference to any particular coordinate system. With the flexibility to use any coordinate system on the surface of a sphere, the equations can be more readily solved numerically when a structured mesh is used by defining the mesh lines to be the coordinate lines. The type of the system of partial differential equations would be hyperbolic or elliptic based on whether the crossflow Mach number is supersonic or subsonic.

2017 ◽  
Vol 49 (4) ◽  
pp. 2591-2614 ◽  
Author(s):  
Geng Chen ◽  
Ronghua Pan ◽  
Shengguo Zhu

2008 ◽  
Vol 69 (3) ◽  
pp. 720-742 ◽  
Author(s):  
James Glimm ◽  
Xiaomei Ji ◽  
Jiequan Li ◽  
Xiaolin Li ◽  
Peng Zhang ◽  
...  

2021 ◽  
Vol 18 (03) ◽  
pp. 701-728
Author(s):  
Huali Zhang

We prove the local existence, uniqueness and stability of local solutions for the Cauchy problem of two-dimensional compressible Euler equations, where the initial data of velocity, density, specific vorticity [Formula: see text] and the spatial derivative of specific vorticity [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document